Video-based Bottleneck Detection utilizing Lagrangian Dynamics in Crowded Scenes

Maik Simon, Markus Küchhold, T. Senst, Erik Bochinski, T. Sikora
{"title":"Video-based Bottleneck Detection utilizing Lagrangian Dynamics in Crowded Scenes","authors":"Maik Simon, Markus Küchhold, T. Senst, Erik Bochinski, T. Sikora","doi":"10.1109/AVSS.2019.8909861","DOIUrl":null,"url":null,"abstract":"Avoiding bottleneck situations in crowds is critical for the safety and comfort of people at large events or in public transportation. Based on the work of Lagrangian motion analysis we propose a novel video-based bottleneck-detector by identifying characteristic stowage patterns in crowd-movements captured by optical flow fields. The Lagrangian framework allows to assess complex time-dependent crowd-motion dynamics at large temporal scales near the bottleneck by two dimensional Lagrangian fields. In particular we propose long-term temporal filtered Finite Time Lyapunov Exponents (FTLE) fields that provide towards a more global segmentation of the crowd movements and allows to capture its deformations when a crowd is passing a bottleneck. Finally, these deformations are used for an automatic spatio-temporal detection of such situations. The performance of the proposed approach is shown in extensive evaluations on the existing Jülich and AGO-RASET datasets, that we have updated with ground truth data for spatio-temporal bottleneck analysis.","PeriodicalId":243194,"journal":{"name":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"45 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2019.8909861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Avoiding bottleneck situations in crowds is critical for the safety and comfort of people at large events or in public transportation. Based on the work of Lagrangian motion analysis we propose a novel video-based bottleneck-detector by identifying characteristic stowage patterns in crowd-movements captured by optical flow fields. The Lagrangian framework allows to assess complex time-dependent crowd-motion dynamics at large temporal scales near the bottleneck by two dimensional Lagrangian fields. In particular we propose long-term temporal filtered Finite Time Lyapunov Exponents (FTLE) fields that provide towards a more global segmentation of the crowd movements and allows to capture its deformations when a crowd is passing a bottleneck. Finally, these deformations are used for an automatic spatio-temporal detection of such situations. The performance of the proposed approach is shown in extensive evaluations on the existing Jülich and AGO-RASET datasets, that we have updated with ground truth data for spatio-temporal bottleneck analysis.
基于拉格朗日动态的拥挤场景视频瓶颈检测
在大型活动或公共交通中,避免拥挤的情况对于人们的安全和舒适至关重要。在拉格朗日运动分析的基础上,我们提出了一种基于视频的瓶颈检测器,通过识别光流场捕获的人群运动中的特征积载模式。拉格朗日框架允许通过二维拉格朗日场在瓶颈附近的大时间尺度上评估复杂的时变人群运动动力学。特别是,我们提出了长期时间过滤的有限时间李雅普诺夫指数(FTLE)字段,它提供了对人群运动的更全局的分割,并允许在人群通过瓶颈时捕获其变形。最后,将这些变形用于此类情况的自动时空检测。对现有j lich和AGO-RASET数据集的广泛评估显示了所提出方法的性能,我们已经使用地面真实数据更新了时空瓶颈分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信