Diverse Topic Phrase Extraction through Latent Semantic Analysis

Jilin Chen, Jun Yan, Benyu Zhang, Qiang Yang, Zheng Chen
{"title":"Diverse Topic Phrase Extraction through Latent Semantic Analysis","authors":"Jilin Chen, Jun Yan, Benyu Zhang, Qiang Yang, Zheng Chen","doi":"10.1109/ICDM.2006.61","DOIUrl":null,"url":null,"abstract":"We propose a novel algorithm for extracting diverse topic phrases in order to provide summary for large corpora. Previous works often ignore the importance of diversity and thus extract phrases crowded on some hot topics while failing to cover other less obvious but important topics. We solve this problem through document re-weighting and phrase diversification by using latent semantic analysis (LSA). Experiments on various datasets show that our new algorithm can improve relevance as well as diversity over different topics for topic phrase extraction problems.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We propose a novel algorithm for extracting diverse topic phrases in order to provide summary for large corpora. Previous works often ignore the importance of diversity and thus extract phrases crowded on some hot topics while failing to cover other less obvious but important topics. We solve this problem through document re-weighting and phrase diversification by using latent semantic analysis (LSA). Experiments on various datasets show that our new algorithm can improve relevance as well as diversity over different topics for topic phrase extraction problems.
基于潜在语义分析的多主题短语提取
为了为大型语料库提供摘要,提出了一种新的主题短语提取算法。以往的作品往往忽视了多样性的重要性,在一些热点话题上抽取了拥挤的短语,而没有涵盖其他不太明显但很重要的话题。我们利用潜在语义分析(latent semantic analysis, LSA),通过文档重加权和短语多样化来解决这个问题。在各种数据集上的实验表明,我们的新算法可以提高不同主题的主题短语提取问题的相关性和多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信