The Computational Complexity of Random Variables with Uniform, Exponential and Pareto Distributions in Real and Interval Forms

A. Finger, A. Loreto, V. Furlan
{"title":"The Computational Complexity of Random Variables with Uniform, Exponential and Pareto Distributions in Real and Interval Forms","authors":"A. Finger, A. Loreto, V. Furlan","doi":"10.1109/WEIT.2013.28","DOIUrl":null,"url":null,"abstract":"To obtain the numerical value of the Uniform, Exponential and Pareto distributions is necessary to use numerical integration and its value is obtained by approximation and therefore affected by rounding or truncation errors. Through the use of intervals, there is an automatic control error with reliable limits. The objective of the work is to analyze the computational complexity for computing the random variables with Uniform, Exponential and Pareto distributions in real and interval form in order to justify that, it to the use intervals to represent the real form of these variables, it is possible to control the propagation of errors and maintain the computational effort.","PeriodicalId":153767,"journal":{"name":"Workshop-School on Theoretical Computer Science","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop-School on Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WEIT.2013.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To obtain the numerical value of the Uniform, Exponential and Pareto distributions is necessary to use numerical integration and its value is obtained by approximation and therefore affected by rounding or truncation errors. Through the use of intervals, there is an automatic control error with reliable limits. The objective of the work is to analyze the computational complexity for computing the random variables with Uniform, Exponential and Pareto distributions in real and interval form in order to justify that, it to the use intervals to represent the real form of these variables, it is possible to control the propagation of errors and maintain the computational effort.
具有均匀分布、指数分布和Pareto分布的随机变量在实数和区间形式下的计算复杂度
为了获得均匀分布、指数分布和帕累托分布的数值,必须使用数值积分,其值是通过近似获得的,因此受舍入或截断误差的影响。通过间隔的使用,有一个具有可靠限制的自动控制误差。该工作的目的是分析计算均匀分布,指数分布和帕累托分布在实数和区间形式的随机变量的计算复杂性,以证明,如果使用区间来表示这些变量的实数形式,就有可能控制误差的传播并保持计算工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信