Computing Large Sparse Multivariate Optimization Problems with an Application in Biophysics

E. Brookes, R. Boppana, B. Demeler
{"title":"Computing Large Sparse Multivariate Optimization Problems with an Application in Biophysics","authors":"E. Brookes, R. Boppana, B. Demeler","doi":"10.1145/1188455.1188541","DOIUrl":null,"url":null,"abstract":"We present a novel divide and conquer method for parallelizing a large scale multivariate linear optimization problem, which is commonly solved using a sequential algorithm with the entire parameter space as the input. The optimization solves a large parameter estimation problem where the result is sparse in the parameters. By partitioning the parameters and the associated computations, our technique overcomes memory constraints when used in the context of a single workstation and achieves high processor utilization when large workstation clusters are used. We implemented this technique in a widely used software package for the analysis of a biophysics problem, which is representative for a large class of problems in the physical sciences. We evaluate the performance of the proposed method on a 512-processor cluster and offer an analytical model for predicting the performance of the algorithm","PeriodicalId":333909,"journal":{"name":"ACM/IEEE SC 2006 Conference (SC'06)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2006 Conference (SC'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1188455.1188541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

We present a novel divide and conquer method for parallelizing a large scale multivariate linear optimization problem, which is commonly solved using a sequential algorithm with the entire parameter space as the input. The optimization solves a large parameter estimation problem where the result is sparse in the parameters. By partitioning the parameters and the associated computations, our technique overcomes memory constraints when used in the context of a single workstation and achieves high processor utilization when large workstation clusters are used. We implemented this technique in a widely used software package for the analysis of a biophysics problem, which is representative for a large class of problems in the physical sciences. We evaluate the performance of the proposed method on a 512-processor cluster and offer an analytical model for predicting the performance of the algorithm
计算大型稀疏多元优化问题及其在生物物理中的应用
我们提出了一种新的分治法来并行化大规模多元线性优化问题,该问题通常使用以整个参数空间为输入的顺序算法来解决。该优化方法解决了参数估计结果稀疏的大参数估计问题。通过对参数和相关计算进行分区,我们的技术克服了在单个工作站上下文中使用时的内存限制,并在使用大型工作站集群时实现了高处理器利用率。我们在一个广泛使用的软件包中实现了这种技术,用于分析生物物理学问题,这是物理科学中一大类问题的代表。我们在512处理器集群上评估了所提出的方法的性能,并提供了预测算法性能的分析模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信