Dries Van Leemput, Armand Naessens, Robbe Elsas, J. Hoebeke, E. D. Poorter
{"title":"Algorithm for Distributed Duty Cycle Adherence in Multi-Hop RPL Networks","authors":"Dries Van Leemput, Armand Naessens, Robbe Elsas, J. Hoebeke, E. D. Poorter","doi":"10.1145/3485730.3492874","DOIUrl":null,"url":null,"abstract":"Wireless Sensor Networks (WSNs) operating in unlicensed frequency bands or employing battery-less devices, require a Duty Cycle (DC) limit to ensure fair spectrum access or limit energy consumption. However, in multi-hop networks, it is up to the network protocol to ensure that all devices comply with such DC restrictions. We therefore developed a distributed DC adherence algorithm that limits the DC of all devices without introducing any additional packet overhead. This paper presents a brief description of the algorithm and evaluates its performance through simulation. Our results show that the algorithm can limit the DC of all devices to ensure no devices must switch off. Our algorithm therefore provides a solution for WSNs where nodes must operate below a DC limit.","PeriodicalId":356322,"journal":{"name":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485730.3492874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless Sensor Networks (WSNs) operating in unlicensed frequency bands or employing battery-less devices, require a Duty Cycle (DC) limit to ensure fair spectrum access or limit energy consumption. However, in multi-hop networks, it is up to the network protocol to ensure that all devices comply with such DC restrictions. We therefore developed a distributed DC adherence algorithm that limits the DC of all devices without introducing any additional packet overhead. This paper presents a brief description of the algorithm and evaluates its performance through simulation. Our results show that the algorithm can limit the DC of all devices to ensure no devices must switch off. Our algorithm therefore provides a solution for WSNs where nodes must operate below a DC limit.