{"title":"Integrated Optimization of Differential Evolution with Grasshopper Optimization Algorithm","authors":"Duangjai Jitkongchuen, Udomlux Ampant","doi":"10.5954/ICAROB.2018.GS3-2","DOIUrl":null,"url":null,"abstract":"This paper proposes a scheme to improve the differential evolution (DE) algorithm performance with integrated the grasshopper optimization algorithm (GOA). The grasshopper optimization algorithm mimics the behavior of grasshopper. The characteristic of grasshoppers is slow movement in the larval stage but sudden movement in the adulthood which seem as exploration and exploitation. The grasshopper optimization algorithm concept is added to DE to guide the search process for potential solutions. The efficiency of the DE/GOA is validated by testing on unimodal and multimodal benchmarks optimization problems. The results prove that the DE/GOA algorithm is competitive compared to the other meta-heuristic algorithms.","PeriodicalId":157035,"journal":{"name":"J. Robotics Netw. Artif. Life","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Robotics Netw. Artif. Life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5954/ICAROB.2018.GS3-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper proposes a scheme to improve the differential evolution (DE) algorithm performance with integrated the grasshopper optimization algorithm (GOA). The grasshopper optimization algorithm mimics the behavior of grasshopper. The characteristic of grasshoppers is slow movement in the larval stage but sudden movement in the adulthood which seem as exploration and exploitation. The grasshopper optimization algorithm concept is added to DE to guide the search process for potential solutions. The efficiency of the DE/GOA is validated by testing on unimodal and multimodal benchmarks optimization problems. The results prove that the DE/GOA algorithm is competitive compared to the other meta-heuristic algorithms.