{"title":"Taurine in Congestive Heart Failure","authors":"Ahmad Farrukh, Sharma Nitish Kumar","doi":"10.23937/2378-2951/1410246","DOIUrl":null,"url":null,"abstract":"Taurine is a ubiquitous amino acid found across the animal kingdom. It is a sulfur-containing amino acid, found in high concentration in the intracellular compartment of excitable tissue, including the myocardium. It functions as an intracellular osmolyte, involved in cell volume regulation. Being a neutral zwitterion, transport of taurine is not accompanied by a change in charge gradient across membranes. This chemical property makes taurine the perfect candidate of cellular osmoregulation. Taurine also regulates sodium and calcium homeostasis, and normal functioning of mitochondria. It has demonstrated ionotropic effects, probably due to its effect on calcium metabolism. Several clinical trials have shown that taurine supplementation improves cardiac performance in those suffering from congestive heart failure. Given its extensive safety profile, taurine supplementation may be beneficial in patients with congestive heart failure. Review ARticle","PeriodicalId":112011,"journal":{"name":"International Journal of Clinical Cardiology","volume":"21 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Clinical Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23937/2378-2951/1410246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Taurine is a ubiquitous amino acid found across the animal kingdom. It is a sulfur-containing amino acid, found in high concentration in the intracellular compartment of excitable tissue, including the myocardium. It functions as an intracellular osmolyte, involved in cell volume regulation. Being a neutral zwitterion, transport of taurine is not accompanied by a change in charge gradient across membranes. This chemical property makes taurine the perfect candidate of cellular osmoregulation. Taurine also regulates sodium and calcium homeostasis, and normal functioning of mitochondria. It has demonstrated ionotropic effects, probably due to its effect on calcium metabolism. Several clinical trials have shown that taurine supplementation improves cardiac performance in those suffering from congestive heart failure. Given its extensive safety profile, taurine supplementation may be beneficial in patients with congestive heart failure. Review ARticle