Combination of complex-valued neural networks with silicon-loaded probes for millimeter-wave non-invasive blood glucose concentration estimation

Seko Nagae, Lena Azuma, R. Natsuaki, A. Hirose
{"title":"Combination of complex-valued neural networks with silicon-loaded probes for millimeter-wave non-invasive blood glucose concentration estimation","authors":"Seko Nagae, Lena Azuma, R. Natsuaki, A. Hirose","doi":"10.23919/USNC-URSI52669.2022.9887445","DOIUrl":null,"url":null,"abstract":"This paper proposes a millimeter-wave human glucose-concentration estimation system based on the combination of a complex-valued neural network (CVNN) and dielectric-loaded probes. The system observes the complex-valued scattering coefficients in the millimeter-wave transmission through a thin human tissue such as an earlobe and a finger web, and estimates the concentration value by utilizing the CVNN learning ability. In this paper, we demonstrate that the silicon loading at the probes enhances the CVNN ability, resulting in a better estimation in in vivo experiments. The results will lead to the realization of reliable and practical non-invasive human blood glucose monitoring systems in the near future.","PeriodicalId":104242,"journal":{"name":"2022 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC-URSI52669.2022.9887445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a millimeter-wave human glucose-concentration estimation system based on the combination of a complex-valued neural network (CVNN) and dielectric-loaded probes. The system observes the complex-valued scattering coefficients in the millimeter-wave transmission through a thin human tissue such as an earlobe and a finger web, and estimates the concentration value by utilizing the CVNN learning ability. In this paper, we demonstrate that the silicon loading at the probes enhances the CVNN ability, resulting in a better estimation in in vivo experiments. The results will lead to the realization of reliable and practical non-invasive human blood glucose monitoring systems in the near future.
复合值神经网络与载硅探针结合用于毫米波无创血糖浓度估计
本文提出了一种基于复值神经网络(CVNN)和介电负载探针相结合的毫米波人体葡萄糖浓度估计系统。该系统通过观察毫米波在人体薄组织(如耳垂和指蹼)中的复值散射系数,并利用CVNN的学习能力估计出浓度值。在本文中,我们证明了探针上的硅负载增强了CVNN的能力,从而在体内实验中得到了更好的估计。研究结果将在不久的将来实现可靠实用的无创人体血糖监测系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信