Simulation study of EIT inverse problem based on Bayesian method

Ying Li, Huifang Zhao, R. He, L. Rao, Xueqin Shen, Weili Yan, D. Khoury, Lijie Feng, Jie Hong, Hongbin Wang, Guizhi Xu
{"title":"Simulation study of EIT inverse problem based on Bayesian method","authors":"Ying Li, Huifang Zhao, R. He, L. Rao, Xueqin Shen, Weili Yan, D. Khoury, Lijie Feng, Jie Hong, Hongbin Wang, Guizhi Xu","doi":"10.1109/CEFC.2010.5481561","DOIUrl":null,"url":null,"abstract":"The prior of blocky resistivity profile is formulated based on the minimal of total variation using Bayesian method, and the resistivity distribution is reconstructed by Maximum a posteriori (MAP). The Markov chain Monte Carlo (MCMC) method with Gibbs sampler is used to sample from posterior density. The simulations on the 2D model show the feasibility of the method.","PeriodicalId":148739,"journal":{"name":"Digests of the 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digests of the 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEFC.2010.5481561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The prior of blocky resistivity profile is formulated based on the minimal of total variation using Bayesian method, and the resistivity distribution is reconstructed by Maximum a posteriori (MAP). The Markov chain Monte Carlo (MCMC) method with Gibbs sampler is used to sample from posterior density. The simulations on the 2D model show the feasibility of the method.
基于贝叶斯方法的EIT反问题仿真研究
利用贝叶斯方法基于总变差的最小值建立块体电阻率剖面的先验,利用最大后验(MAP)重构电阻率分布。采用带Gibbs采样器的马尔可夫链蒙特卡罗(MCMC)方法对后验密度进行采样。在二维模型上的仿真结果表明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信