Directivity of a plasmonic dipole optical antenna

Neda Mojaverian, Guiru Gu, Xuejun Lu
{"title":"Directivity of a plasmonic dipole optical antenna","authors":"Neda Mojaverian, Guiru Gu, Xuejun Lu","doi":"10.1109/NAECON.2015.7443104","DOIUrl":null,"url":null,"abstract":"Metallic plasmonic structures can modify the EM wave distribution and convert free-space propagation infrared light to localized surface plasmonic resonance (SPR). This can effectively function as an optical antenna and thus can enhance the performance of optical devices such as detectors and lasers. Most of the reported optical antenna devices are not closely interacted, which doesn't take full advantages of optical antennas. In addition, there is very few report on important antenna properties such as far-field pattern and antenna directivity. In this paper, we report a closed coupled plasmonic antenna and quantum dot infrared photodetector (QDIP). The plasmonic antenna directivity is measured and analyzed.","PeriodicalId":133804,"journal":{"name":"2015 National Aerospace and Electronics Conference (NAECON)","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2015.7443104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metallic plasmonic structures can modify the EM wave distribution and convert free-space propagation infrared light to localized surface plasmonic resonance (SPR). This can effectively function as an optical antenna and thus can enhance the performance of optical devices such as detectors and lasers. Most of the reported optical antenna devices are not closely interacted, which doesn't take full advantages of optical antennas. In addition, there is very few report on important antenna properties such as far-field pattern and antenna directivity. In this paper, we report a closed coupled plasmonic antenna and quantum dot infrared photodetector (QDIP). The plasmonic antenna directivity is measured and analyzed.
等离子体偶极子光学天线的指向性
金属等离子体结构可以改变电磁波的分布,将自由空间传播的红外光转化为局部表面等离子体共振(SPR)。这可以有效地作为光学天线,从而可以提高光学设备的性能,如探测器和激光器。目前所报道的光天线器件大都不是紧密交互的,没有充分发挥光天线的优势。此外,对天线远场方向图和天线指向性等重要特性的研究很少。本文报道了一种闭合耦合等离子体天线和量子点红外探测器(QDIP)。对等离子体天线的指向性进行了测量和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信