Aharon Bar-Hillel, Amir Di-Nur, L. Ein-Dor, Ran Gilad-Bachrach, Yossi Ittach
{"title":"Workstation capacity tuning using reinforcement learning","authors":"Aharon Bar-Hillel, Amir Di-Nur, L. Ein-Dor, Ran Gilad-Bachrach, Yossi Ittach","doi":"10.1145/1362622.1362666","DOIUrl":null,"url":null,"abstract":"Computer grids are complex, heterogeneous, and dynamic systems, whose behavior is governed by hundreds of manually-tuned parameters. As the complexity of these systems grows, automating the procedure of parameter tuning becomes indispensable. In this paper, we consider the problem of auto-tuning server capacity, i.e. the number of jobs a server runs in parallel. We present three different reinforcement learning algorithms, which generate a dynamic policy by changing the number of concurrent running jobs according to the job types and machine state. The algorithms outperform manually-tuned policies for the entire range of checked workloads, with average throughput improvement greater than 20%. On multi-core servers, the average throughput improvement is approximately 40%, which hints at the enormous improvement potential of such a tuning mechanism with the gradual transition to multi-core machines.","PeriodicalId":274744,"journal":{"name":"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1362622.1362666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Computer grids are complex, heterogeneous, and dynamic systems, whose behavior is governed by hundreds of manually-tuned parameters. As the complexity of these systems grows, automating the procedure of parameter tuning becomes indispensable. In this paper, we consider the problem of auto-tuning server capacity, i.e. the number of jobs a server runs in parallel. We present three different reinforcement learning algorithms, which generate a dynamic policy by changing the number of concurrent running jobs according to the job types and machine state. The algorithms outperform manually-tuned policies for the entire range of checked workloads, with average throughput improvement greater than 20%. On multi-core servers, the average throughput improvement is approximately 40%, which hints at the enormous improvement potential of such a tuning mechanism with the gradual transition to multi-core machines.