Near-Optimal Compression for Compressed Sensing

Rayan Saab, Rongrong Wang, Ö. Yilmaz
{"title":"Near-Optimal Compression for Compressed Sensing","authors":"Rayan Saab, Rongrong Wang, Ö. Yilmaz","doi":"10.1109/DCC.2015.31","DOIUrl":null,"url":null,"abstract":"In this note we study the under-addressed quantization stage implicit in any compressed sensing signal acquisition paradigm. We also study the problem of compressing the bitstream resulting from the quantization. We propose using Sigma-Delta (ΣΔ) quantization followed by a compression stage comprised of a discrete Johnson-Lindenstrauss embedding, and a subsequent reconstruction scheme based on convex optimization. We show that this encoding/decoding method yields near-optimal rate-distortion guarantees for sparse and compressible signals and is robust to noise. Our results hold for sub-Gaussian (including Gaussian and Bernoulli) random compressed sensing measurements, and they hold for high bit-depth quantizers as well as for coarse quantizers including 1-bit quantization.","PeriodicalId":313156,"journal":{"name":"2015 Data Compression Conference","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2015.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this note we study the under-addressed quantization stage implicit in any compressed sensing signal acquisition paradigm. We also study the problem of compressing the bitstream resulting from the quantization. We propose using Sigma-Delta (ΣΔ) quantization followed by a compression stage comprised of a discrete Johnson-Lindenstrauss embedding, and a subsequent reconstruction scheme based on convex optimization. We show that this encoding/decoding method yields near-optimal rate-distortion guarantees for sparse and compressible signals and is robust to noise. Our results hold for sub-Gaussian (including Gaussian and Bernoulli) random compressed sensing measurements, and they hold for high bit-depth quantizers as well as for coarse quantizers including 1-bit quantization.
压缩感知的近最优压缩
在本文中,我们研究了任何压缩感知信号采集范式中隐含的欠寻址量化阶段。我们还研究了由量化产生的比特流的压缩问题。我们建议使用Sigma-Delta (ΣΔ)量化,然后是由离散Johnson-Lindenstrauss嵌入组成的压缩阶段,以及随后基于凸优化的重建方案。我们证明这种编码/解码方法对稀疏和可压缩信号产生接近最佳的率失真保证,并且对噪声具有鲁棒性。我们的结果适用于亚高斯(包括高斯和伯努利)随机压缩感知测量,它们适用于高位深度量化器以及包括1位量化在内的粗量化器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信