V. Sharma, J. N. Tripathi, R. Nagpal, Sujay Deb, Rakesh Malik
{"title":"A comparative analysis of jitter estimation techniques","authors":"V. Sharma, J. N. Tripathi, R. Nagpal, Sujay Deb, Rakesh Malik","doi":"10.1109/ICECCE.2014.7086645","DOIUrl":null,"url":null,"abstract":"With the advancement of VLSI technology, the effect of jitter is becoming more critical on high speed signals. To negate the effect of jitter on these signals, the causes of jitter in a circuit need to be identified by decomposing the jitter. In this paper, a comparative analysis of various jitter estimation techniques is presented. The statistical domain methods are based on fitting techniques while the frequency domain methods are based on frequency spectrum analysis. This work describes both statistical domain methods and frequency domain methods. Further, their strengths and limitations are discussed. The algorithms are implemented in MATLAB and the results are extensively verified with Agilent ADS.","PeriodicalId":223751,"journal":{"name":"2014 International Conference on Electronics, Communication and Computational Engineering (ICECCE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Electronics, Communication and Computational Engineering (ICECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCE.2014.7086645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
With the advancement of VLSI technology, the effect of jitter is becoming more critical on high speed signals. To negate the effect of jitter on these signals, the causes of jitter in a circuit need to be identified by decomposing the jitter. In this paper, a comparative analysis of various jitter estimation techniques is presented. The statistical domain methods are based on fitting techniques while the frequency domain methods are based on frequency spectrum analysis. This work describes both statistical domain methods and frequency domain methods. Further, their strengths and limitations are discussed. The algorithms are implemented in MATLAB and the results are extensively verified with Agilent ADS.