Design of lath-shaped tool in defective nanostructure removal from digital touch-panel surfaces

P. Pa
{"title":"Design of lath-shaped tool in defective nanostructure removal from digital touch-panel surfaces","authors":"P. Pa","doi":"10.1117/12.840503","DOIUrl":null,"url":null,"abstract":"An effective economic viability that uses micro electroremoval as a reclaim system was developed to remove the defective ITO nanostructure coatings from the optical PET surfaces of digital paper. The low yield of ITO thin film deposition is an important factor in semiconductor production. By establishing the reclaim process using the ultra-precise removal of the nanostructure coatings, the optoelectronic semiconductor industry can effectively reclaim defective products, minimizing both production costs and pollution. In the current experiment, a large lath-shaped cathode with a small gap-width between the cathode and the workpiece takes less time for the same amount of ITO removal. A small end radius of the cathode combines with enough electric power to drive fast machining. Pulsed direct current can improve the effect of dreg discharge, and it is advantageous to associate the workpiece with the fast feed rate. However, this improvement can increase the current rating. A high rotational speed of the electrodes, a higher temperature, or a large flow rate of the electrolyte corresponds to a higher removal rate for the ITO nanostructure. The micro electroremoval requires only a short period of time to remove the ITO thin film coatings easily and cleanly.","PeriodicalId":339588,"journal":{"name":"International Conference on Smart Materials and Nanotechnology in Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Smart Materials and Nanotechnology in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.840503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An effective economic viability that uses micro electroremoval as a reclaim system was developed to remove the defective ITO nanostructure coatings from the optical PET surfaces of digital paper. The low yield of ITO thin film deposition is an important factor in semiconductor production. By establishing the reclaim process using the ultra-precise removal of the nanostructure coatings, the optoelectronic semiconductor industry can effectively reclaim defective products, minimizing both production costs and pollution. In the current experiment, a large lath-shaped cathode with a small gap-width between the cathode and the workpiece takes less time for the same amount of ITO removal. A small end radius of the cathode combines with enough electric power to drive fast machining. Pulsed direct current can improve the effect of dreg discharge, and it is advantageous to associate the workpiece with the fast feed rate. However, this improvement can increase the current rating. A high rotational speed of the electrodes, a higher temperature, or a large flow rate of the electrolyte corresponds to a higher removal rate for the ITO nanostructure. The micro electroremoval requires only a short period of time to remove the ITO thin film coatings easily and cleanly.
板条形工具去除数字触摸屏表面缺陷纳米结构的设计
研究了一种经济可行的方法,即利用微电去除技术去除电子纸光学PET表面的ITO纳米结构涂层。ITO薄膜沉积成品率低是影响半导体生产的一个重要因素。通过建立超精密去除纳米结构涂层的回收工艺,光电半导体行业可以有效地回收不良产品,最大限度地降低生产成本和污染。在目前的实验中,一个大的板条状阴极,阴极与工件之间的间隙宽度小,在相同数量的ITO去除中花费的时间更少。阴极的小端半径与足够的电力相结合,以驱动快速加工。脉冲直流电可以改善排渣效果,有利于将工件与快进给速度联系起来。但是,这种改进可以增加当前的额定值。较高的电极转速、较高的温度或较大的电解质流速对应于较高的ITO纳米结构去除率。微电去除只需很短的时间,就可以轻松、干净地去除ITO薄膜涂层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信