Energy Consumption Models and Predictions for Large-Scale Systems

T. Samak, C. Morin, D. Bailey
{"title":"Energy Consumption Models and Predictions for Large-Scale Systems","authors":"T. Samak, C. Morin, D. Bailey","doi":"10.1109/IPDPSW.2013.228","DOIUrl":null,"url":null,"abstract":"Responsible, efficient and well-planned power consumption is becoming a necessity for monetary returns and scalability of computing infrastructures. While there are numerous sources from which power data can be obtained, analyzing this data is an intrinsically hard task. In this paper, we propose a data analysis pipeline that can handle the large-scale collection of energy consumption logs, apply sophisticated modeling to enable accurate prediction, and evaluate the efficiency of the analysis approach. We present the analysis of a power consumption data set collected over a 6-month period from two clusters of the Grid'5000 experimentation platform used in production. To solve the large data challenge, we used Hadoop with Pig data processing to generate a summary of the data that provides basic statistical aggregations, over different time scales. The aggregate data is then analyzed as a time series using sophisticated modeling methods with R statistical software. Energy models from such large dataset can help in understanding the evolution of consumption patterns, predicting future energy trends, and providing basis for generalizing the energy models to similar large-scale systems.","PeriodicalId":234552,"journal":{"name":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","volume":"318 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2013.228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Responsible, efficient and well-planned power consumption is becoming a necessity for monetary returns and scalability of computing infrastructures. While there are numerous sources from which power data can be obtained, analyzing this data is an intrinsically hard task. In this paper, we propose a data analysis pipeline that can handle the large-scale collection of energy consumption logs, apply sophisticated modeling to enable accurate prediction, and evaluate the efficiency of the analysis approach. We present the analysis of a power consumption data set collected over a 6-month period from two clusters of the Grid'5000 experimentation platform used in production. To solve the large data challenge, we used Hadoop with Pig data processing to generate a summary of the data that provides basic statistical aggregations, over different time scales. The aggregate data is then analyzed as a time series using sophisticated modeling methods with R statistical software. Energy models from such large dataset can help in understanding the evolution of consumption patterns, predicting future energy trends, and providing basis for generalizing the energy models to similar large-scale systems.
大型系统的能源消耗模型与预测
负责任、高效和精心规划的电力消耗正在成为计算基础设施的货币回报和可伸缩性的必要条件。虽然可以从许多来源获得电力数据,但分析这些数据本质上是一项艰巨的任务。在本文中,我们提出了一个数据分析管道,它可以处理大规模的能耗日志收集,应用复杂的建模来实现准确的预测,并评估分析方法的效率。我们分析了在生产中使用的Grid’5000实验平台的两个集群中收集的6个月期间的功耗数据集。为了解决大数据的挑战,我们使用Hadoop和Pig数据处理来生成数据摘要,提供不同时间尺度的基本统计聚合。然后使用R统计软件使用复杂的建模方法将汇总数据作为时间序列进行分析。基于此类大数据集的能源模型可以帮助理解能源消费模式的演变,预测未来的能源趋势,并为将能源模型推广到类似的大尺度系统提供基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信