Optimum lag and subset selection for a radial basis function equaliser

E. Chng, B. Mulgrew, Sheng Chen, Garth A. Gibson
{"title":"Optimum lag and subset selection for a radial basis function equaliser","authors":"E. Chng, B. Mulgrew, Sheng Chen, Garth A. Gibson","doi":"10.1109/NNSP.1995.514934","DOIUrl":null,"url":null,"abstract":"This paper examines the application of the radial basis function (RBF) network to the modelling of the Bayesian equaliser. In particular, the authors study the effects of delay order d on decision boundary and attainable bit error rate (BER) performance. To determine the optimum delay parameter for minimum BER performance, a simple BER estimator is proposed. The implementation complexity of the RBF network grows exponentially with respect to the number of input nodes. As such, the full implementation of the RBF network to realise the Bayesian solution may not be feasible. To reduce some of the implementation complexity, the authors propose an algorithm to perform subset model selection. The authors' results indicate that it is possible to reduce model size without significant degradation in BER performance.","PeriodicalId":403144,"journal":{"name":"Proceedings of 1995 IEEE Workshop on Neural Networks for Signal Processing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1995.514934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper examines the application of the radial basis function (RBF) network to the modelling of the Bayesian equaliser. In particular, the authors study the effects of delay order d on decision boundary and attainable bit error rate (BER) performance. To determine the optimum delay parameter for minimum BER performance, a simple BER estimator is proposed. The implementation complexity of the RBF network grows exponentially with respect to the number of input nodes. As such, the full implementation of the RBF network to realise the Bayesian solution may not be feasible. To reduce some of the implementation complexity, the authors propose an algorithm to perform subset model selection. The authors' results indicate that it is possible to reduce model size without significant degradation in BER performance.
径向基函数均衡器的最优滞后和子集选择
本文研究了径向基函数(RBF)网络在贝叶斯均衡器建模中的应用。特别地,作者研究了延迟阶数d对决策边界和可达误码率性能的影响。为了确定具有最小误码率性能的最佳延迟参数,提出了一种简单的误码率估计器。RBF网络的实现复杂度随着输入节点的数量呈指数增长。因此,完全实现RBF网络来实现贝叶斯解决方案可能是不可行的。为了降低实现的复杂性,作者提出了一种子集模型选择算法。作者的结果表明,在不显著降低误码率性能的情况下减小模型尺寸是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信