A Reinforcement Learning Algorithm for Optimal Dynamic Policies of Joint Condition-based Maintenance and Condition-based Production

H. Rasay, Fariba Azizi, Mehrnaz Salmani, F. Naderkhani
{"title":"A Reinforcement Learning Algorithm for Optimal Dynamic Policies of Joint Condition-based Maintenance and Condition-based Production","authors":"H. Rasay, Fariba Azizi, Mehrnaz Salmani, F. Naderkhani","doi":"10.1109/ICPHM57936.2023.10194057","DOIUrl":null,"url":null,"abstract":"This paper focuses on development of joint optimal maintenance and production policy for a specific type of production system that allows for adjustable production rates. The rate of deterioration of the system is directly related to the production rate, with higher production rates resulting in greater expected deterioration. The system's deterioration can be controlled through two main actions: (1) scheduling and conducting maintenance actions referred to as maintenance policy; and (2) adjusting the production rate referred to as production policy. To determine the optimal actions given the system's state, a Markov decision process (MDP) is developed and a reinforcement learning algorithm, specifically a Q-learning algorithm, is utilized. The algorithm's hyper parameters are tuned using a value-iteration algorithm of dynamic programming. The goal is to minimize expected costs for the system over a finite planning horizon.","PeriodicalId":169274,"journal":{"name":"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM57936.2023.10194057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on development of joint optimal maintenance and production policy for a specific type of production system that allows for adjustable production rates. The rate of deterioration of the system is directly related to the production rate, with higher production rates resulting in greater expected deterioration. The system's deterioration can be controlled through two main actions: (1) scheduling and conducting maintenance actions referred to as maintenance policy; and (2) adjusting the production rate referred to as production policy. To determine the optimal actions given the system's state, a Markov decision process (MDP) is developed and a reinforcement learning algorithm, specifically a Q-learning algorithm, is utilized. The algorithm's hyper parameters are tuned using a value-iteration algorithm of dynamic programming. The goal is to minimize expected costs for the system over a finite planning horizon.
基于状态维修和基于状态生产的联合动态最优策略的强化学习算法
本文的重点是开发联合最优维护和生产政策,为特定类型的生产系统,允许可调的生产率。系统的劣化率与生产率直接相关,生产率越高,预期劣化率越高。系统的劣化可以通过两种主要行动来控制:(1)计划和实施维护行动,即维护策略;(2)调整生产速度,即生产政策。为了确定给定系统状态下的最优行为,开发了马尔可夫决策过程(MDP),并使用了强化学习算法,特别是q -学习算法。该算法的超参数采用动态规划的值迭代算法进行调优。目标是在有限的规划范围内使系统的预期成本最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信