Effective and efficient AI-based approaches to cloud resource provisioning

Yang Yang, Xiaolin Chang, Xuanni Du, Jiqiang Liu, Lin Li
{"title":"Effective and efficient AI-based approaches to cloud resource provisioning","authors":"Yang Yang, Xiaolin Chang, Xuanni Du, Jiqiang Liu, Lin Li","doi":"10.1109/ICON.2013.6781960","DOIUrl":null,"url":null,"abstract":"This paper aims to design efficient and effective approaches to virtual network embedding (VNE) problem, which deals with the embedding of a requested virtual network (VN) in an underlying physical (substrate network) infrastructure. When the node and link constraints (including CPU, memory, network bandwidth, and network delay) are both taken into account, the VN embedding problem is NP-hard, even in the offline case. The capabilities of some Artificial Intelligence (AI) techniques have been validated in handling the VN problem. In this paper, we propose two efficient and effective VNE algorithms based on differential evolutionary (DE) technique. The extensive simulation results show that DE technique performs some orders of magnitude faster than GA and PSO-based VNE algorithms in achieving the comparable long-term revenue of Infrastructure providers.","PeriodicalId":219583,"journal":{"name":"2013 19th IEEE International Conference on Networks (ICON)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 19th IEEE International Conference on Networks (ICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICON.2013.6781960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to design efficient and effective approaches to virtual network embedding (VNE) problem, which deals with the embedding of a requested virtual network (VN) in an underlying physical (substrate network) infrastructure. When the node and link constraints (including CPU, memory, network bandwidth, and network delay) are both taken into account, the VN embedding problem is NP-hard, even in the offline case. The capabilities of some Artificial Intelligence (AI) techniques have been validated in handling the VN problem. In this paper, we propose two efficient and effective VNE algorithms based on differential evolutionary (DE) technique. The extensive simulation results show that DE technique performs some orders of magnitude faster than GA and PSO-based VNE algorithms in achieving the comparable long-term revenue of Infrastructure providers.
有效和高效的基于人工智能的云资源供应方法
本文旨在设计一种高效的方法来解决虚拟网络嵌入(VNE)问题,该问题涉及将请求的虚拟网络(VN)嵌入到底层物理(基板网络)基础设施中。当同时考虑节点和链路约束(包括CPU、内存、网络带宽和网络延迟)时,即使在离线情况下,VN嵌入问题也是np困难的。一些人工智能(AI)技术的能力已经在处理VN问题上得到了验证。本文提出了两种基于差分进化(DE)技术的高效VNE算法。广泛的仿真结果表明,在实现基础设施提供商的可比长期收入方面,DE技术比基于遗传算法和基于pso的VNE算法快几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信