Projection diagrams

P. Chruściel
{"title":"Projection diagrams","authors":"P. Chruściel","doi":"10.1093/oso/9780198855415.003.0007","DOIUrl":null,"url":null,"abstract":"In this chapter we show that one can usefully represent classes of non-spherically symmetric geometries in terms of two-dimensional diagrams, called projection diagrams, using an auxiliary two-dimensional metric constructed out of the spacetime metric. Whenever such a construction can be carried out, the issues such as stable causality, global hyperbolicity, the existence of event or Cauchy horizons, the causal nature of boundaries, and the existence of conformally smooth infinities become evident by inspection of the diagrams.","PeriodicalId":129765,"journal":{"name":"Geometry of Black Holes","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry of Black Holes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198855415.003.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this chapter we show that one can usefully represent classes of non-spherically symmetric geometries in terms of two-dimensional diagrams, called projection diagrams, using an auxiliary two-dimensional metric constructed out of the spacetime metric. Whenever such a construction can be carried out, the issues such as stable causality, global hyperbolicity, the existence of event or Cauchy horizons, the causal nature of boundaries, and the existence of conformally smooth infinities become evident by inspection of the diagrams.
投影图
在这一章中,我们将展示我们可以利用一个由时空度规构造的辅助二维度规,用二维图(称为投影图)来有效地表示非球对称几何的类。每当这样的构造可以被执行时,诸如稳定因果性、全局双曲性、事件或柯西视界的存在性、边界的因果性以及共形光滑无穷大的存在性等问题就会通过检查图而变得明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信