Variational sampling approaches to word confusability

J. R. Hershey, P. Olsen, R. Gopinath
{"title":"Variational sampling approaches to word confusability","authors":"J. R. Hershey, P. Olsen, R. Gopinath","doi":"10.1109/ITA.2007.4357616","DOIUrl":null,"url":null,"abstract":"In speech recognition it is often useful to determine how confusable two words are. For speech models this comes down to computing the Bayes error between two HMMs. This problem is analytically and numerically intractable. A common alternative, that is numerically approachable, uses the KL divergence in place of the Bayes error. We present new approaches to approximating the KL divergence, that combine variational methods with importance sampling. The Bhattacharyya distance - a closer cousin of the Bayes error - turns out to be even more amenable to our approach. Our experiments demonstrate an improvement of orders of magnitude in accuracy over conventional methods.","PeriodicalId":439952,"journal":{"name":"2007 Information Theory and Applications Workshop","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Information Theory and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2007.4357616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In speech recognition it is often useful to determine how confusable two words are. For speech models this comes down to computing the Bayes error between two HMMs. This problem is analytically and numerically intractable. A common alternative, that is numerically approachable, uses the KL divergence in place of the Bayes error. We present new approaches to approximating the KL divergence, that combine variational methods with importance sampling. The Bhattacharyya distance - a closer cousin of the Bayes error - turns out to be even more amenable to our approach. Our experiments demonstrate an improvement of orders of magnitude in accuracy over conventional methods.
易混淆词的变分抽样方法
在语音识别中,确定两个单词的易混淆程度通常是有用的。对于语音模型,这归结为计算两个hmm之间的贝叶斯误差。这个问题在分析上和数值上都难以解决。一种常见的替代方法是使用KL散度来代替贝叶斯误差,这在数值上是可接近的。我们提出了新的方法来逼近KL散度,结合变分方法和重要抽样。巴塔查里亚距离——贝叶斯误差的近亲——被证明更适合我们的方法。我们的实验表明,与传统方法相比,准确度提高了几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信