{"title":"The infimum of the dual volume of convex\ncocompact hyperbolic 3–manifolds","authors":"Filippo Mazzoli","doi":"10.2140/gt.2023.27.2319","DOIUrl":null,"url":null,"abstract":"We show that the infimum of the dual volume of the convex core of a convex co-compact hyperbolic $3$-manifold with incompressible boundary coincides with the infimum of the Riemannian volume of its convex core, as we vary the geometry by quasi-isometric deformations. We deduce a linear lower bound of the volume of the convex core of a quasi-Fuchsian manifold in terms of the length of its bending measured lamination, with optimal multiplicative constant.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.2319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We show that the infimum of the dual volume of the convex core of a convex co-compact hyperbolic $3$-manifold with incompressible boundary coincides with the infimum of the Riemannian volume of its convex core, as we vary the geometry by quasi-isometric deformations. We deduce a linear lower bound of the volume of the convex core of a quasi-Fuchsian manifold in terms of the length of its bending measured lamination, with optimal multiplicative constant.