Chan-Vese Attention U-Net: An attention mechanism for robust segmentation

Nicolas Makaroff, L. Cohen
{"title":"Chan-Vese Attention U-Net: An attention mechanism for robust segmentation","authors":"Nicolas Makaroff, L. Cohen","doi":"10.48550/arXiv.2306.16098","DOIUrl":null,"url":null,"abstract":"When studying the results of a segmentation algorithm using convolutional neural networks, one wonders about the reliability and consistency of the results. This leads to questioning the possibility of using such an algorithm in applications where there is little room for doubt. We propose in this paper a new attention gate based on the use of Chan-Vese energy minimization to control more precisely the segmentation masks given by a standard CNN architecture such as the U-Net model. This mechanism allows to obtain a constraint on the segmentation based on the resolution of a PDE. The study of the results allows us to observe the spatial information retained by the neural network on the region of interest and obtains competitive results on the binary segmentation. We illustrate the efficiency of this approach for medical image segmentation on a database of MRI brain images.","PeriodicalId":379504,"journal":{"name":"International Conference on Geometric Science of Information","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Geometric Science of Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.16098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When studying the results of a segmentation algorithm using convolutional neural networks, one wonders about the reliability and consistency of the results. This leads to questioning the possibility of using such an algorithm in applications where there is little room for doubt. We propose in this paper a new attention gate based on the use of Chan-Vese energy minimization to control more precisely the segmentation masks given by a standard CNN architecture such as the U-Net model. This mechanism allows to obtain a constraint on the segmentation based on the resolution of a PDE. The study of the results allows us to observe the spatial information retained by the neural network on the region of interest and obtains competitive results on the binary segmentation. We illustrate the efficiency of this approach for medical image segmentation on a database of MRI brain images.
Chan-Vese Attention U-Net:一种稳健分割的注意机制
在研究使用卷积神经网络的分割算法的结果时,人们想知道结果的可靠性和一致性。这导致人们质疑在几乎没有怀疑余地的应用程序中使用这种算法的可能性。本文提出了一种新的基于Chan-Vese能量最小化的注意力门,以更精确地控制由标准CNN架构(如U-Net模型)给出的分割掩码。该机制允许基于PDE的分辨率获得对分割的约束。通过对结果的研究,我们可以观察到神经网络在感兴趣区域上保留的空间信息,并在二值分割上得到比较好的结果。我们说明了这种方法在MRI脑图像数据库上的医学图像分割的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信