User interest representation intelligent session recommendation model based on multi-attention mechanism

Huang Meigen, Chen Linjiao, Xiao Nan
{"title":"User interest representation intelligent session recommendation model based on multi-attention mechanism","authors":"Huang Meigen, Chen Linjiao, Xiao Nan","doi":"10.1109/ICPECA53709.2022.9719194","DOIUrl":null,"url":null,"abstract":"To solve the problem that it is difficult to take account of user behavior diversity and item features inherent in a limited sequence of user conversation behavior, and a single model cannot make full use of favorable feature information for recommendation matching, In this paper, we propose a User Interest Representation (UIR) session recommendation model (SR-UIAM) integrating Attention Mechanism (AM). Using project information, studies project representation from a multi-dimensional and fine-grained perspective and excavates deeper relationships between users and projects. Finally, some experiments are carried out on two real open benchmark data sets, and the experimental results show that the proposed method can improve the expressiveness of the model and improve the recommendation performance to some extent.","PeriodicalId":244448,"journal":{"name":"2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPECA53709.2022.9719194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To solve the problem that it is difficult to take account of user behavior diversity and item features inherent in a limited sequence of user conversation behavior, and a single model cannot make full use of favorable feature information for recommendation matching, In this paper, we propose a User Interest Representation (UIR) session recommendation model (SR-UIAM) integrating Attention Mechanism (AM). Using project information, studies project representation from a multi-dimensional and fine-grained perspective and excavates deeper relationships between users and projects. Finally, some experiments are carried out on two real open benchmark data sets, and the experimental results show that the proposed method can improve the expressiveness of the model and improve the recommendation performance to some extent.
基于多注意机制的用户兴趣表示智能会话推荐模型
为解决在有限的用户会话行为序列中难以考虑用户行为多样性和项目特征,以及单一模型不能充分利用有利特征信息进行推荐匹配的问题,本文提出了一种集成注意机制(AM)的用户兴趣表示(UIR)会话推荐模型(SR-UIAM)。利用项目信息,从多维度和细粒度的角度研究项目表示,挖掘用户与项目之间更深层次的关系。最后,在两个真实的开放基准数据集上进行了一些实验,实验结果表明,所提出的方法可以提高模型的表达能力,并在一定程度上提高推荐性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信