An Efficient Algorithm for Hierarchical Classification of Protein and Gene Functions

F. Fabris, A. Freitas
{"title":"An Efficient Algorithm for Hierarchical Classification of Protein and Gene Functions","authors":"F. Fabris, A. Freitas","doi":"10.1109/DEXA.2014.29","DOIUrl":null,"url":null,"abstract":"The classification of protein and gene functions is a complex problem that is becoming more relevant as the number of sequenced genes and proteins increases. This work presents a modified version of the Extended Local Hierarchical Naive Bayes algorithm, which exploits the requirements of the original algorithm (single-path, mandatory-leaf-prediction hierarchical classification problems in tree-structured class hierarchies) to greatly improve classification run-time. We show that, considering 18 hierarchical classification datasets, the modified algorithm yields equivalent predictive performance and significantly improves run-time in the training and prediction phases.","PeriodicalId":291899,"journal":{"name":"2014 25th International Workshop on Database and Expert Systems Applications","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 25th International Workshop on Database and Expert Systems Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2014.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The classification of protein and gene functions is a complex problem that is becoming more relevant as the number of sequenced genes and proteins increases. This work presents a modified version of the Extended Local Hierarchical Naive Bayes algorithm, which exploits the requirements of the original algorithm (single-path, mandatory-leaf-prediction hierarchical classification problems in tree-structured class hierarchies) to greatly improve classification run-time. We show that, considering 18 hierarchical classification datasets, the modified algorithm yields equivalent predictive performance and significantly improves run-time in the training and prediction phases.
一种高效的蛋白质和基因功能分层分类算法
蛋白质和基因功能的分类是一个复杂的问题,随着测序基因和蛋白质数量的增加,这个问题变得越来越重要。本文提出了一种改进的扩展局部分层朴素贝叶斯算法,该算法利用了原始算法的要求(树结构类层次结构中的单路径、强制叶预测分层分类问题),大大提高了分类运行时间。我们表明,在考虑18个分层分类数据集的情况下,改进的算法产生了等效的预测性能,并显著提高了训练和预测阶段的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信