An RGB-D Based Approach for Human Pose Estimation

Ziming Wang, Yang Lu, Wei Ni, Liang Song
{"title":"An RGB-D Based Approach for Human Pose Estimation","authors":"Ziming Wang, Yang Lu, Wei Ni, Liang Song","doi":"10.1109/INSAI54028.2021.00039","DOIUrl":null,"url":null,"abstract":"With depth information more easily accessible even on mobile devices, leveraging RGB and depth information for RGB-D training provides a new way to enhance human pose estimation performance. In this paper, we propose an RGB-D based approach for human pose estimation. The main contributions of this paper are: 1) improving the accuracy and robustness of the model by utilizing depth image, 2) establishing a lightweight network architecture to improve the performance in detection speed, which makes it suitable for deployment on mobile devices. Qualitative and quantitative analyses on experimental results demonstrate that our model outperforms Open-Pose by 34% in detection speed, reduces model size to 42% at the same time. Our model also provides some advantages in specific background environments.","PeriodicalId":232335,"journal":{"name":"2021 International Conference on Networking Systems of AI (INSAI)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Networking Systems of AI (INSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INSAI54028.2021.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With depth information more easily accessible even on mobile devices, leveraging RGB and depth information for RGB-D training provides a new way to enhance human pose estimation performance. In this paper, we propose an RGB-D based approach for human pose estimation. The main contributions of this paper are: 1) improving the accuracy and robustness of the model by utilizing depth image, 2) establishing a lightweight network architecture to improve the performance in detection speed, which makes it suitable for deployment on mobile devices. Qualitative and quantitative analyses on experimental results demonstrate that our model outperforms Open-Pose by 34% in detection speed, reduces model size to 42% at the same time. Our model also provides some advantages in specific background environments.
基于RGB-D的人体姿态估计方法
即使在移动设备上也更容易访问深度信息,利用RGB和深度信息进行RGB- d训练提供了一种增强人体姿态估计性能的新方法。在本文中,我们提出了一种基于RGB-D的人体姿态估计方法。本文的主要贡献是:1)利用深度图像提高了模型的准确性和鲁棒性;2)建立了一种轻量级的网络架构,提高了检测速度的性能,使其适合在移动设备上部署。实验结果的定性和定量分析表明,我们的模型在检测速度上比Open-Pose快34%,同时将模型尺寸减小到42%。我们的模型在特定的背景环境中也提供了一些优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信