Mining Spatio-Temporal Features from mmW Radar echoes for Hand Gesture Recognition

Zhang Kang, Lan Shengchang, Zhang Guiyuan
{"title":"Mining Spatio-Temporal Features from mmW Radar echoes for Hand Gesture Recognition","authors":"Zhang Kang, Lan Shengchang, Zhang Guiyuan","doi":"10.1109/APMC46564.2019.9038713","DOIUrl":null,"url":null,"abstract":"Human gesture recognition is a new way of interaction and a new application direction of millimeter wave radar. Compared with Doppler radar, FMCW radar can eliminate Doppler frequency interference of moving targets at different distances and accurately obtain the velocity-range information during gesture motion. In this paper, we use the 77GHz millimeter wave radar to extract the time variation characteristics of the Doppler frequency of the gesture. The convolutional neural network was selected to classify the gesture mining spatiotemporal features of the five volunteers. The experimental results show that the feature can describe the gesture velocity change information well and can significantly improve the versatility of the network by adding small amount data of more volunteers data to establish a personal dataset.","PeriodicalId":162908,"journal":{"name":"2019 IEEE Asia-Pacific Microwave Conference (APMC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Asia-Pacific Microwave Conference (APMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APMC46564.2019.9038713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Human gesture recognition is a new way of interaction and a new application direction of millimeter wave radar. Compared with Doppler radar, FMCW radar can eliminate Doppler frequency interference of moving targets at different distances and accurately obtain the velocity-range information during gesture motion. In this paper, we use the 77GHz millimeter wave radar to extract the time variation characteristics of the Doppler frequency of the gesture. The convolutional neural network was selected to classify the gesture mining spatiotemporal features of the five volunteers. The experimental results show that the feature can describe the gesture velocity change information well and can significantly improve the versatility of the network by adding small amount data of more volunteers data to establish a personal dataset.
从毫米波雷达回波中挖掘时空特征用于手势识别
人体手势识别是一种新的交互方式,是毫米波雷达新的应用方向。与多普勒雷达相比,FMCW雷达可以消除不同距离运动目标的多普勒频率干扰,准确获取手势运动过程中的速度-距离信息。本文采用77GHz毫米波雷达提取手势多普勒频率的时变特征。选择卷积神经网络对5名志愿者的手势挖掘时空特征进行分类。实验结果表明,该特征可以很好地描述手势速度变化信息,并且可以通过添加更多志愿者数据的少量数据来建立个人数据集,从而显著提高网络的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信