A weak method to come close to solution of Goldbach conjecture

Pingyuan Zhou
{"title":"A weak method to come close to solution of Goldbach conjecture","authors":"Pingyuan Zhou","doi":"10.12988/imf.2019.9938","DOIUrl":null,"url":null,"abstract":"In this note we proved that if Ln ≥ Pn − n log n for n ≥ 1 then Ln → ∞ as n → ∞ using the prime number theorem and Rosser theorem, and Goldbach conjecture follows from the result, where Ln is the largest strong Goldbach number generated by the n-th prime Pn and denotes an even number such that every even number from 4 to Ln is the sum of two primes among the first n primes but Ln + 2 is not such a sum. It means Pn − n log n is the smallest possible value of Ln for n ≥ 1 to support Goldbach conjecture, therefore, Goldbach conjecture is true if it can be proven that Ln > Pn − n log n for n ≥ 1. Mathematics Subject Classification: 11A41","PeriodicalId":107214,"journal":{"name":"International Mathematical Forum","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematical Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/imf.2019.9938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this note we proved that if Ln ≥ Pn − n log n for n ≥ 1 then Ln → ∞ as n → ∞ using the prime number theorem and Rosser theorem, and Goldbach conjecture follows from the result, where Ln is the largest strong Goldbach number generated by the n-th prime Pn and denotes an even number such that every even number from 4 to Ln is the sum of two primes among the first n primes but Ln + 2 is not such a sum. It means Pn − n log n is the smallest possible value of Ln for n ≥ 1 to support Goldbach conjecture, therefore, Goldbach conjecture is true if it can be proven that Ln > Pn − n log n for n ≥ 1. Mathematics Subject Classification: 11A41
逼近哥德巴赫猜想解的一种弱方法
在这个报告中我们证明了如果Ln≥Pn−nlgn n≥1然后Ln→∞n→∞使用素数定理和伐木工人定理,从结果和哥德巴赫猜想,Ln是最大的强哥德巴赫生成的第n个质数Pn和表示一个偶数,这样每个偶数从4 Ln是两个质数的和第一批n质数但Ln + 2不是这样的一笔。这意味着当n≥1时,Pn−n log n是支持哥德巴赫猜想的最小可能值,因此,当n≥1时,如果可以证明Ln > Pn−n log n,则哥德巴赫猜想成立。数学学科分类:11A41
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信