Comparison Method for Handling Missing Data in Clinical Studies

Heru Nugroho, N. P. Utama, K. Surendro
{"title":"Comparison Method for Handling Missing Data in Clinical Studies","authors":"Heru Nugroho, N. P. Utama, K. Surendro","doi":"10.1145/3384544.3384594","DOIUrl":null,"url":null,"abstract":"Missing data is an issue that cannot be avoided. Most data mining algorithms cannot work with data that consist of missing values. Complete case analysis, single imputation, multiple imputations, and kNN imputation are some methods that can be used to handle the missing data. Each method has is own advantages and disadvantages. This paper compares of these methods using datasets in clinical studies, chronic kidney disease, Indian Pima diabetes, thyroid, and hepatitis. The accuracy of each method was compared using several classifiers. The experimental results show that kNN imputation method provides better accuracy than other methods.","PeriodicalId":200246,"journal":{"name":"Proceedings of the 2020 9th International Conference on Software and Computer Applications","volume":"91 4-5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 9th International Conference on Software and Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3384544.3384594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Missing data is an issue that cannot be avoided. Most data mining algorithms cannot work with data that consist of missing values. Complete case analysis, single imputation, multiple imputations, and kNN imputation are some methods that can be used to handle the missing data. Each method has is own advantages and disadvantages. This paper compares of these methods using datasets in clinical studies, chronic kidney disease, Indian Pima diabetes, thyroid, and hepatitis. The accuracy of each method was compared using several classifiers. The experimental results show that kNN imputation method provides better accuracy than other methods.
临床研究中缺失数据处理的比较方法
丢失数据是一个无法避免的问题。大多数数据挖掘算法不能处理由缺失值组成的数据。完整案例分析、单次归算、多次归算和kNN归算是处理缺失数据的几种方法。每种方法都有自己的优点和缺点。本文比较了这些方法使用的数据集在临床研究,慢性肾脏疾病,印度皮马糖尿病,甲状腺和肝炎。使用几种分类器比较了每种方法的准确率。实验结果表明,该方法具有较好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信