{"title":"Feasibility Study on the Reading of Energy-Harvested Implanted NFC Tags Using Mobile Phones and Commercial NFC IC","authors":"A. Lázaro, M. Boada, R. Villarino, D. Girbau","doi":"10.1109/IMBIoC47321.2020.9385033","DOIUrl":null,"url":null,"abstract":"This paper studies the feasibility of reading implanted sensors based on battery-less Near-Field Communication (NFC) integrated circuits using an NFC-equipped smartphone as a reader. Different commercial NFC integrated circuits (IC) with energy harvesting capability are compared. A conventional system based on the resonant coupling between 2 coils is compared with a system proposed here consisting in the resonant coupling between 3 coils. In the latter, a relay antenna is implemented on a patch and attached on the skin. A measurement setup to characterize the read range of the NFC implanted sensors is built up. Experimental results show that the 3 coils system presents a much better performance. The prototype of the implanted tag consisted of an $\\boldsymbol{15 \\ \\times 15\\ \\mathbf{mm}}$ antenna and a commercial NFC IC with energy harvesting that is able to read up to 16 mm inside the body using commercial smartphones.","PeriodicalId":297049,"journal":{"name":"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMBIoC47321.2020.9385033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper studies the feasibility of reading implanted sensors based on battery-less Near-Field Communication (NFC) integrated circuits using an NFC-equipped smartphone as a reader. Different commercial NFC integrated circuits (IC) with energy harvesting capability are compared. A conventional system based on the resonant coupling between 2 coils is compared with a system proposed here consisting in the resonant coupling between 3 coils. In the latter, a relay antenna is implemented on a patch and attached on the skin. A measurement setup to characterize the read range of the NFC implanted sensors is built up. Experimental results show that the 3 coils system presents a much better performance. The prototype of the implanted tag consisted of an $\boldsymbol{15 \ \times 15\ \mathbf{mm}}$ antenna and a commercial NFC IC with energy harvesting that is able to read up to 16 mm inside the body using commercial smartphones.