{"title":"Further spherically symmetric solutions","authors":"A. Steane","doi":"10.1093/oso/9780192895646.003.0018","DOIUrl":null,"url":null,"abstract":"We obtain the interior Schwarzschild solution; the stellar structure equations (Tolman-Oppenheimer-Volkoff); the Reissner-Nordstrom metric (charged black hole) and the de Sitter-Schwarzschild metric. These both illustrate how the field equation is tackled in non-vacuum cases, and bring out some of the physics of stars, electromagnetic fields and the cosmological constant.","PeriodicalId":365636,"journal":{"name":"Relativity Made Relatively Easy Volume 2","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Relativity Made Relatively Easy Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780192895646.003.0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We obtain the interior Schwarzschild solution; the stellar structure equations (Tolman-Oppenheimer-Volkoff); the Reissner-Nordstrom metric (charged black hole) and the de Sitter-Schwarzschild metric. These both illustrate how the field equation is tackled in non-vacuum cases, and bring out some of the physics of stars, electromagnetic fields and the cosmological constant.