Development of a web-based blind test to score and rank hyperspectral classification algorithms

K. King, J. Kerekes
{"title":"Development of a web-based blind test to score and rank hyperspectral classification algorithms","authors":"K. King, J. Kerekes","doi":"10.1109/WNYIPW.2010.5649748","DOIUrl":null,"url":null,"abstract":"Remotely sensed hyperspectral imagery plays an important role in land cover classification by supplying the user with additional spectral data as compared to high-resolution color imagery. The web application described in this paper enables users to test their classification algorithms without the risk of bias by withholding the majority of the true classification data and only providing a small section of the truth data to be used for training user algorithms. After downloading the dataset, users run their classification algorithms and upload their results back to the web application. The blind test site automatically scores and ranks the uploaded result. The Classification Blind Test web application can be found at: http://dirsapps.cis.rit.edu/classtest/.","PeriodicalId":210139,"journal":{"name":"2010 Western New York Image Processing Workshop","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Western New York Image Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WNYIPW.2010.5649748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Remotely sensed hyperspectral imagery plays an important role in land cover classification by supplying the user with additional spectral data as compared to high-resolution color imagery. The web application described in this paper enables users to test their classification algorithms without the risk of bias by withholding the majority of the true classification data and only providing a small section of the truth data to be used for training user algorithms. After downloading the dataset, users run their classification algorithms and upload their results back to the web application. The blind test site automatically scores and ranks the uploaded result. The Classification Blind Test web application can be found at: http://dirsapps.cis.rit.edu/classtest/.
开发基于网络的盲测,对高光谱分类算法进行评分和排序
与高分辨率彩色图像相比,遥感高光谱图像为用户提供了额外的光谱数据,在土地覆盖分类中发挥了重要作用。本文描述的web应用程序通过保留大部分真实分类数据,只提供一小部分真实数据用于训练用户算法,使用户能够在没有偏差风险的情况下测试他们的分类算法。下载数据集后,用户运行他们的分类算法并将结果上传到web应用程序。盲测站点自动对上传的结果进行评分和排名。分类盲测web应用程序可以在http://dirsapps.cis.rit.edu/classtest/上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信