Uncertainty-Aware Elastic Virtual Machine Scheduling for Stream Processing Systems

Shigeru Imai, S. Patterson, Carlos A. Varela
{"title":"Uncertainty-Aware Elastic Virtual Machine Scheduling for Stream Processing Systems","authors":"Shigeru Imai, S. Patterson, Carlos A. Varela","doi":"10.1109/CCGRID.2018.00021","DOIUrl":null,"url":null,"abstract":"Stream processing systems deployed on the cloud need to be elastic to effectively accommodate workload variations over time. Performance models can predict maximum sustainable throughput (MST) as a function of the number of VMs allocated. We present a scheduling framework that incorporates three statistical techniques to improve Quality of Service (QoS) of cloud stream processing systems: (i) uncertainty quantification to consider variance in the MST model; (ii) online learning to update MST model as new performance metrics are gathered; and (iii) workload models to predict input data stream rates assuming regular patterns occur over time. Our framework can be parameterized by a QoS satisfaction target that statistically finds the best performance/cost tradeoff. Our results illustrate that each of the three techniques alone significantly improves QoS, from 52% to 73-81% QoS satisfaction rates on average for eight benchmark applications. Furthermore, applying all three techniques allows us to reach 98.62% QoS satisfaction rate with a cost less than twice the cost of the optimal (in hindsight) VM allocations, and half of the cost of allocating VMs for the peak demand in the workload.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Stream processing systems deployed on the cloud need to be elastic to effectively accommodate workload variations over time. Performance models can predict maximum sustainable throughput (MST) as a function of the number of VMs allocated. We present a scheduling framework that incorporates three statistical techniques to improve Quality of Service (QoS) of cloud stream processing systems: (i) uncertainty quantification to consider variance in the MST model; (ii) online learning to update MST model as new performance metrics are gathered; and (iii) workload models to predict input data stream rates assuming regular patterns occur over time. Our framework can be parameterized by a QoS satisfaction target that statistically finds the best performance/cost tradeoff. Our results illustrate that each of the three techniques alone significantly improves QoS, from 52% to 73-81% QoS satisfaction rates on average for eight benchmark applications. Furthermore, applying all three techniques allows us to reach 98.62% QoS satisfaction rate with a cost less than twice the cost of the optimal (in hindsight) VM allocations, and half of the cost of allocating VMs for the peak demand in the workload.
流处理系统的不确定性感知弹性虚拟机调度
部署在云上的流处理系统需要具有弹性,以有效地适应工作负载随时间的变化。性能模型可以预测最大可持续吞吐量(MST)作为分配的虚拟机数量的函数。我们提出了一个调度框架,该框架结合了三种统计技术来提高云流处理系统的服务质量(QoS):(i)不确定性量化,以考虑MST模型中的方差;(ii)在线学习,在收集到新的绩效指标时更新MST模型;(iii)工作负载模型,用于预测输入数据流速率,假设随时间发生规律模式。我们的框架可以通过QoS满意度目标进行参数化,该目标可以在统计上找到最佳的性能/成本权衡。我们的研究结果表明,这三种技术中的每一种都能显著提高QoS,在8个基准应用程序中,QoS满意率平均从52%提高到73-81%。此外,应用所有三种技术使我们能够达到98.62%的QoS满意度,而成本不到最佳VM分配成本的两倍,并且为工作负载中的峰值需求分配VM的成本降低了一半。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信