The Down-and-Out-Call Option Model of Default Risk: An Application of Genetic Algorithms

Manu Gupta, P. Prakash
{"title":"The Down-and-Out-Call Option Model of Default Risk: An Application of Genetic Algorithms","authors":"Manu Gupta, P. Prakash","doi":"10.4156/IJEI.VOL4.ISSUE1.2","DOIUrl":null,"url":null,"abstract":"Abstract This paper compares results obtained from two different structural option based models of credit risk derived from Merton (1974). The traditional Merton model is computed using calculus based algorithms and used as a benchmark. The Down-and-Out Call Equity (DOC) option model is solved using genetic algorithms (GA). Results for the DOC option model using GA are compared to a previous study which utilized a hybrid of branch-and-bound algorithm and bisection search method to solve the DOC option model. The paper finds GA yields better precision and convergence rates than the combinatorial methods based algorithm.","PeriodicalId":223554,"journal":{"name":"International Journal of Engineering and Industries","volume":"52 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Industries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/IJEI.VOL4.ISSUE1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper compares results obtained from two different structural option based models of credit risk derived from Merton (1974). The traditional Merton model is computed using calculus based algorithms and used as a benchmark. The Down-and-Out Call Equity (DOC) option model is solved using genetic algorithms (GA). Results for the DOC option model using GA are compared to a previous study which utilized a hybrid of branch-and-bound algorithm and bisection search method to solve the DOC option model. The paper finds GA yields better precision and convergence rates than the combinatorial methods based algorithm.
违约风险的沽出期权模型:遗传算法的应用
摘要本文比较了Merton(1974)提出的两种不同的基于结构性期权的信用风险模型的结果。传统的默顿模型是使用基于微积分的算法计算的,并作为基准。采用遗传算法求解跌跌期权期权模型。将遗传算法求解DOC期权模型的结果与前人采用分支定界算法和等分搜索法混合求解DOC期权模型的研究结果进行了比较。结果表明,遗传算法比基于组合方法的算法具有更好的精度和收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信