A spatial data partitioning and merging method for parallel vector spatial analysis

Qiang Qiu, Xiao Yao, Cuiting Chen, Yu Liu, Jinyun Fang
{"title":"A spatial data partitioning and merging method for parallel vector spatial analysis","authors":"Qiang Qiu, Xiao Yao, Cuiting Chen, Yu Liu, Jinyun Fang","doi":"10.1109/GEOINFORMATICS.2015.7378651","DOIUrl":null,"url":null,"abstract":"Based on the principle of the proximity of spatial elements and the equilibrium of spatial data's size, this paper presents a data partitioning and merging method based on spatial filling curve and collection of spatial features. In the data reducing section, this method takes the principle of dynamic tree merging and reduces the times of data serialization and deserialization. The experiment shows that such methods can cut down the time of every process' computing and merging, improve the load balancing degree, and make a great improvement to the efficiency of parallel algorithm and expandability.","PeriodicalId":371399,"journal":{"name":"2015 23rd International Conference on Geoinformatics","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd International Conference on Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEOINFORMATICS.2015.7378651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Based on the principle of the proximity of spatial elements and the equilibrium of spatial data's size, this paper presents a data partitioning and merging method based on spatial filling curve and collection of spatial features. In the data reducing section, this method takes the principle of dynamic tree merging and reduces the times of data serialization and deserialization. The experiment shows that such methods can cut down the time of every process' computing and merging, improve the load balancing degree, and make a great improvement to the efficiency of parallel algorithm and expandability.
一种并行矢量空间分析的空间数据划分与合并方法
基于空间要素的接近性和空间数据大小的均衡性原则,提出了一种基于空间填充曲线和空间特征集合的数据划分与合并方法。在数据约简部分,该方法采用动态树合并的原理,减少了数据序列化和反序列化的次数。实验表明,该方法减少了各进程的计算和合并时间,提高了负载均衡程度,大大提高了并行算法的效率和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信