Prediction-Based Dynamic Resource Allocation for Video Transcoding in Cloud Computing

F. Jokhio, A. Ashraf, S. Lafond, Ivan Porres, J. Lilius
{"title":"Prediction-Based Dynamic Resource Allocation for Video Transcoding in Cloud Computing","authors":"F. Jokhio, A. Ashraf, S. Lafond, Ivan Porres, J. Lilius","doi":"10.1109/PDP.2013.44","DOIUrl":null,"url":null,"abstract":"This paper presents prediction-based dynamic resource allocation algorithms to scale video transcoding service on a given Infrastructure as a Service cloud. The proposed algorithms provide mechanisms for allocation and deallocation of virtual machines (VMs) to a cluster of video transcoding servers in a horizontal fashion. We use a two-step load prediction method, which allows proactive resource allocation with high prediction accuracy under real-time constraints. For cost-efficiency, our work supports transcoding of multiple on-demand video streams concurrently on a single VM, resulting in a reduced number of required VMs. We use video segmentation at group of pictures level, which splits video streams into smaller segments that can be transcoded independently of one another. The approach is demonstrated in a discrete-event simulation and an experimental evaluation involving two different load patterns.","PeriodicalId":202977,"journal":{"name":"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2013.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

Abstract

This paper presents prediction-based dynamic resource allocation algorithms to scale video transcoding service on a given Infrastructure as a Service cloud. The proposed algorithms provide mechanisms for allocation and deallocation of virtual machines (VMs) to a cluster of video transcoding servers in a horizontal fashion. We use a two-step load prediction method, which allows proactive resource allocation with high prediction accuracy under real-time constraints. For cost-efficiency, our work supports transcoding of multiple on-demand video streams concurrently on a single VM, resulting in a reduced number of required VMs. We use video segmentation at group of pictures level, which splits video streams into smaller segments that can be transcoded independently of one another. The approach is demonstrated in a discrete-event simulation and an experimental evaluation involving two different load patterns.
云计算中基于预测的视频转码动态资源分配
本文提出了一种基于预测的动态资源分配算法,用于在给定的基础设施即服务云上扩展视频转码服务。提出的算法以水平方式为视频转码服务器集群的虚拟机(vm)分配和回收提供了机制。采用两步负荷预测方法,在实时约束下实现资源的主动分配,预测精度高。为了节省成本,我们的工作支持在单个VM上并发地对多个点播视频流进行转码,从而减少了所需VM的数量。我们在图像组级别使用视频分割,将视频流分割成更小的片段,这些片段可以彼此独立地进行转码。该方法在两种不同负载模式下的离散事件仿真和实验评估中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信