Robust left ventricle segmentation from ultrasound data using deep neural networks and efficient search methods

G. Carneiro, J. Nascimento, A. Freitas
{"title":"Robust left ventricle segmentation from ultrasound data using deep neural networks and efficient search methods","authors":"G. Carneiro, J. Nascimento, A. Freitas","doi":"10.1109/ISBI.2010.5490181","DOIUrl":null,"url":null,"abstract":"The automatic segmentation of the left ventricle of the heart in ultrasound images has been a core research topic in medical image analysis. Most of the solutions are based on low-level segmentation methods, which uses a prior model of the appearance of the left ventricle, but imaging conditions violating the assumptions present in the prior can damage their performance. Recently, pattern recognition methods have become more robust to imaging conditions by automatically building an appearance model from training images, but they present a few challenges, such as: the need of a large set of training images, robustness to imaging conditions not present in the training data, and complex search process. In this paper we handle the second problem using the recently proposed deep neural network and the third problem with efficient searching algorithms. Quantitative comparisons show that the accuracy of our approach is higher than state-of-the-art methods. The results also show that efficient search strategies reduce ten times the run-time complexity.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

The automatic segmentation of the left ventricle of the heart in ultrasound images has been a core research topic in medical image analysis. Most of the solutions are based on low-level segmentation methods, which uses a prior model of the appearance of the left ventricle, but imaging conditions violating the assumptions present in the prior can damage their performance. Recently, pattern recognition methods have become more robust to imaging conditions by automatically building an appearance model from training images, but they present a few challenges, such as: the need of a large set of training images, robustness to imaging conditions not present in the training data, and complex search process. In this paper we handle the second problem using the recently proposed deep neural network and the third problem with efficient searching algorithms. Quantitative comparisons show that the accuracy of our approach is higher than state-of-the-art methods. The results also show that efficient search strategies reduce ten times the run-time complexity.
基于深度神经网络和高效搜索方法的超声数据鲁棒左心室分割
超声图像中心脏左心室的自动分割一直是医学图像分析中的一个核心研究课题。大多数解决方案都是基于低级分割方法,它使用左心室外观的先验模型,但是违反先验假设的成像条件会损害其性能。近年来,模式识别方法通过自动从训练图像中构建外观模型,提高了模式识别对成像条件的鲁棒性,但也面临着一些挑战,如需要大量的训练图像,对训练数据中不存在的成像条件的鲁棒性,以及复杂的搜索过程。在本文中,我们用最近提出的深度神经网络来处理第二个问题,用高效的搜索算法来处理第三个问题。定量比较表明,我们的方法的准确性高于最先进的方法。结果还表明,有效的搜索策略将运行时复杂度降低了10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信