Mathematical model of delay based on a system with gamma distribution

V. Tarasov, В Н Тарасов
{"title":"Mathematical model of delay based on a system with gamma distribution","authors":"V. Tarasov, В Н Тарасов","doi":"10.18469/1810-3189.2021.24.2.62-67","DOIUrl":null,"url":null,"abstract":"This article is devoted to the analysis of a queuing system formed by two flows with density functions of the gamma distribution law in order to derive a solution for the average delay of requests in the queue, which is the main characteristic for any queuing system. According to this characteristic, for example, packet delays in packet-switched networks are estimated when they are modeled using the queuing system. In queuing theory, studies of G/G/1 systems are especially relevant because there is no solution in the final form for the general case. Therefore, in the study of such systems, various particular distribution laws are used as an arbitrary distribution law for G. In the study of G/G/1 systems, an important role is played by the method of spectral decomposition of the solution of the Lindley integral equation, and most of the results in the theory of queuing were obtained using this method. The article presents the derivation of the calculation formula for the average delay of requests in the queue in the system under consideration, also based on the spectral decomposition method.","PeriodicalId":129469,"journal":{"name":"Physics of Wave Processes and Radio Systems","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Wave Processes and Radio Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18469/1810-3189.2021.24.2.62-67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article is devoted to the analysis of a queuing system formed by two flows with density functions of the gamma distribution law in order to derive a solution for the average delay of requests in the queue, which is the main characteristic for any queuing system. According to this characteristic, for example, packet delays in packet-switched networks are estimated when they are modeled using the queuing system. In queuing theory, studies of G/G/1 systems are especially relevant because there is no solution in the final form for the general case. Therefore, in the study of such systems, various particular distribution laws are used as an arbitrary distribution law for G. In the study of G/G/1 systems, an important role is played by the method of spectral decomposition of the solution of the Lindley integral equation, and most of the results in the theory of queuing were obtained using this method. The article presents the derivation of the calculation formula for the average delay of requests in the queue in the system under consideration, also based on the spectral decomposition method.
基于伽玛分布系统的延迟数学模型
本文利用伽玛分布律的密度函数对一个由两个流组成的排队系统进行了分析,从而得到了排队系统的主要特征——平均请求延迟的解。例如,根据这一特性,在使用排队系统对分组交换网络进行建模时,可以估计分组延迟。在排队理论中,G/G/1系统的研究特别相关,因为一般情况下没有最终形式的解。因此,在G/G/1系统的研究中,各种特殊分布律被用作G的任意分布律。在G/G/1系统的研究中,Lindley积分方程解的谱分解方法起着重要的作用,排队理论中的大部分结果都是用这种方法得到的。本文也基于谱分解方法推导了考虑系统中队列中请求平均延迟的计算公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信