{"title":"iTree: Exploring time-varying data using indexable tree","authors":"Yi Gu, Chaoli Wang","doi":"10.1109/PacificVis.2013.6596138","DOIUrl":null,"url":null,"abstract":"Significant advances have been made in time-varying data analysis and visualization, mainly in improving our ability to identify temporal trends and classify the underlying data. However, the ability to perform cost-effective data querying and indexing is often not incorporated, which posts a serious limitation as the size of time-varying data continue to grow. In this paper, we present a new approach that unifies data compacting, indexing and classification into a single framework. We achieve this by transforming the time-activity curve representation of a time-varying data set into a hierarchical symbolic representation. We further build an indexable version of the data hierarchy, from which we create the iTree for visual representation of the time-varying data. A hyperbolic layout algorithm is employed to draw the iTree with a large number of nodes and provide focus+context visualization for interaction. We achieve effective querying, searching and tracking of time-varying data sets by enabling multiple coordinated views consisting of the iTree, the symbolic view and the spatial view.","PeriodicalId":179865,"journal":{"name":"2013 IEEE Pacific Visualization Symposium (PacificVis)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis.2013.6596138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Significant advances have been made in time-varying data analysis and visualization, mainly in improving our ability to identify temporal trends and classify the underlying data. However, the ability to perform cost-effective data querying and indexing is often not incorporated, which posts a serious limitation as the size of time-varying data continue to grow. In this paper, we present a new approach that unifies data compacting, indexing and classification into a single framework. We achieve this by transforming the time-activity curve representation of a time-varying data set into a hierarchical symbolic representation. We further build an indexable version of the data hierarchy, from which we create the iTree for visual representation of the time-varying data. A hyperbolic layout algorithm is employed to draw the iTree with a large number of nodes and provide focus+context visualization for interaction. We achieve effective querying, searching and tracking of time-varying data sets by enabling multiple coordinated views consisting of the iTree, the symbolic view and the spatial view.