Influence of Geometrical Properties for the Calculation of a Pressure-Free Whole Heart Geometry

J. Brenneisen, S. Schuler, E. Kovacheva, T. Gerach, O. Dössel, A. Loewe
{"title":"Influence of Geometrical Properties for the Calculation of a Pressure-Free Whole Heart Geometry","authors":"J. Brenneisen, S. Schuler, E. Kovacheva, T. Gerach, O. Dössel, A. Loewe","doi":"10.23967/WCCM-ECCOMAS.2020.177","DOIUrl":null,"url":null,"abstract":". Individualized computer models of the geometry of the human heart are often based on mag-netic resonance images (MRI) or computed tomography (CT) scans. The stress distribution in the imaged state cannot be measured but needs to be estimated from the segmented geometry, e.g. by an iterative algorithm. As the convergence of this algorithm depends on different geometrical conditions, we systematically studied their influence. Beside various shape alterations, we investigated the chamber volume, as well as the effect of material parameters. We found a marked influence of passive material parameters: increasing the model stiffness by a factor of ten halved the residual norm in the first iteration. Flat and concave areas led to a reduced robustness and convergence rate of the unloading algorithm. With this study, the geometric effects and modeling aspects governing the unloading algorithm’s convergence are identified and can be used as a basis for further improvement.","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th WCCM-ECCOMAS Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

. Individualized computer models of the geometry of the human heart are often based on mag-netic resonance images (MRI) or computed tomography (CT) scans. The stress distribution in the imaged state cannot be measured but needs to be estimated from the segmented geometry, e.g. by an iterative algorithm. As the convergence of this algorithm depends on different geometrical conditions, we systematically studied their influence. Beside various shape alterations, we investigated the chamber volume, as well as the effect of material parameters. We found a marked influence of passive material parameters: increasing the model stiffness by a factor of ten halved the residual norm in the first iteration. Flat and concave areas led to a reduced robustness and convergence rate of the unloading algorithm. With this study, the geometric effects and modeling aspects governing the unloading algorithm’s convergence are identified and can be used as a basis for further improvement.
几何特性对无压全心几何计算的影响
. 人类心脏几何形状的个性化计算机模型通常基于磁共振图像(MRI)或计算机断层扫描(CT)扫描。成像状态下的应力分布不能测量,而需要从分割的几何形状中估计,例如通过迭代算法。由于该算法的收敛性取决于不同的几何条件,我们系统地研究了它们的影响。除了各种形状变化外,我们还研究了腔体体积以及材料参数的影响。我们发现被动材料参数的显著影响:在第一次迭代中,将模型刚度增加十倍,使剩余范数减半。平坦和凹区域导致卸载算法的鲁棒性和收敛速度降低。通过本研究,确定了控制卸载算法收敛的几何效应和建模方面,可作为进一步改进的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信