Two New Regression and Curve Fitting Techniques Using Numerical Methods

Md. Kowsher, M. J. Uddin, Mir Md. Moheuddin, Mahbuba Yesmin Turaba
{"title":"Two New Regression and Curve Fitting Techniques Using Numerical Methods","authors":"Md. Kowsher, M. J. Uddin, Mir Md. Moheuddin, Mahbuba Yesmin Turaba","doi":"10.2139/ssrn.3590089","DOIUrl":null,"url":null,"abstract":"Regression is a process to estimate the bond among variables. It is a statistical technique and is used as prediction with the curve fitting in machine learning, data science, economics, etc. Linear and Polynomial regression is widely used to fit a curve and forecasting result. In this exploration, we propose two new linear and non-linear regression techniques using the strategy of interpolation-extrapolation and bisection of numerical analysis. However, interpolation and extrapolation cannot be applied in regression because of over-fitting curve. In our paper, we have developed a technique to reduce the curve fitting that will enable the interpolation and extrapolation scheme to use in regression. Another procedure is to find out an equation of curve fitting in an optimal way using the Bisection Method. We also demonstrate the graphical presentations and comparison through all the occurring iterations.","PeriodicalId":406666,"journal":{"name":"Applied Computing eJournal","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3590089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Regression is a process to estimate the bond among variables. It is a statistical technique and is used as prediction with the curve fitting in machine learning, data science, economics, etc. Linear and Polynomial regression is widely used to fit a curve and forecasting result. In this exploration, we propose two new linear and non-linear regression techniques using the strategy of interpolation-extrapolation and bisection of numerical analysis. However, interpolation and extrapolation cannot be applied in regression because of over-fitting curve. In our paper, we have developed a technique to reduce the curve fitting that will enable the interpolation and extrapolation scheme to use in regression. Another procedure is to find out an equation of curve fitting in an optimal way using the Bisection Method. We also demonstrate the graphical presentations and comparison through all the occurring iterations.
两种新的数值回归和曲线拟合技术
回归是一个估计变量之间联系的过程。它是一种统计技术,在机器学习、数据科学、经济学等领域被用作曲线拟合的预测。线性和多项式回归被广泛用于拟合曲线和预测结果。在这一探索中,我们提出了两种新的线性和非线性回归技术,使用插值-外推和数值分析的平分策略。然而,由于曲线的过拟合,插值和外推不能应用于回归。在我们的论文中,我们开发了一种技术来减少曲线拟合,这将使插值和外推方案在回归中使用。另一种方法是用等分法求出曲线拟合的最优方程。我们还通过所有发生的迭代演示图形表示和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信