Autotuning Tensor Transposition

Lai Wei, J. Mellor-Crummey
{"title":"Autotuning Tensor Transposition","authors":"Lai Wei, J. Mellor-Crummey","doi":"10.1109/IPDPSW.2014.43","DOIUrl":null,"url":null,"abstract":"Tensor transposition, a generalization of matrix transposition, is an important primitive used when performing tensor contraction. Efficient implementation of tensor transposition for modern node architectures depends on various architecture capabilities such as cache and memory hierarchy, threads, and SIMD parallelism. This paper introduces a framework that uses static analysis and empirical autotuning to produce optimized parallel tensor transposition code for node architectures using a rule-based code generation and transformation system. By exploring various optimization techniques with different settings, our framework achieves more than 80% of the bandwidth of memcpy for tensors on two very different node architectures, one a dual-socket system with Intel Westmere processors and the other a quad-socket system with IBM Power7 processors.","PeriodicalId":153864,"journal":{"name":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2014.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Tensor transposition, a generalization of matrix transposition, is an important primitive used when performing tensor contraction. Efficient implementation of tensor transposition for modern node architectures depends on various architecture capabilities such as cache and memory hierarchy, threads, and SIMD parallelism. This paper introduces a framework that uses static analysis and empirical autotuning to produce optimized parallel tensor transposition code for node architectures using a rule-based code generation and transformation system. By exploring various optimization techniques with different settings, our framework achieves more than 80% of the bandwidth of memcpy for tensors on two very different node architectures, one a dual-socket system with Intel Westmere processors and the other a quad-socket system with IBM Power7 processors.
自调谐张量变换
张量转置是矩阵转置的推广,是进行张量收缩时用到的一个重要原语。现代节点架构中张量变换的有效实现依赖于各种架构功能,如缓存和内存层次结构、线程和SIMD并行性。本文介绍了一个使用静态分析和经验自调整的框架,该框架使用基于规则的代码生成和转换系统为节点架构生成优化的并行张量转置代码。通过探索不同设置下的各种优化技术,我们的框架在两种非常不同的节点体系结构上为张量实现了超过80%的memcpy带宽,一种是带有Intel Westmere处理器的双插槽系统,另一种是带有IBM Power7处理器的四插槽系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信