Robust detection of random signals in exponential mixture noise

D. Stein
{"title":"Robust detection of random signals in exponential mixture noise","authors":"D. Stein","doi":"10.1109/ACSSC.1995.540909","DOIUrl":null,"url":null,"abstract":"Exponential mixture probability density functions (PDFs) are shown to be useful models of the intensity of high resolution low-pulse-rate radar clutter. In this environment, using known parameters, incoherent detection algorithms based upon these noise models have significantly improved performance in comparison with detection algorithms based on exponential PDFs. To implement exponential mixture based detection algorithms, parameters must be estimated from noise only data and applied to the data under test. Certain parameters vary over short range and time segments, and performance is often degraded due to uncertainty in the true parameter values. For the algorithms presented, each parameter is assumed to be known within a certain interval, and valves of the parameters needed by the processor are selected to prevent an excessive number of false alarms. One technique selects certain percentiles for each parameter, and another minimizes the maximum false alarm rate. In addition a high variance state measured globally may be added to the processor. The performance of these algorithms are compared with a CFAR processor using radar data.","PeriodicalId":171264,"journal":{"name":"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1995.540909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Exponential mixture probability density functions (PDFs) are shown to be useful models of the intensity of high resolution low-pulse-rate radar clutter. In this environment, using known parameters, incoherent detection algorithms based upon these noise models have significantly improved performance in comparison with detection algorithms based on exponential PDFs. To implement exponential mixture based detection algorithms, parameters must be estimated from noise only data and applied to the data under test. Certain parameters vary over short range and time segments, and performance is often degraded due to uncertainty in the true parameter values. For the algorithms presented, each parameter is assumed to be known within a certain interval, and valves of the parameters needed by the processor are selected to prevent an excessive number of false alarms. One technique selects certain percentiles for each parameter, and another minimizes the maximum false alarm rate. In addition a high variance state measured globally may be added to the processor. The performance of these algorithms are compared with a CFAR processor using radar data.
指数混合噪声中随机信号的鲁棒检测
指数混合概率密度函数是高分辨率低脉冲率雷达杂波强度的有效模型。在这种环境下,使用已知参数,与基于指数pdf的检测算法相比,基于这些噪声模型的非相干检测算法的性能显著提高。为了实现基于指数混合的检测算法,必须从只有噪声的数据中估计参数并将其应用于待测数据。某些参数在短范围和时间段内变化,并且由于真实参数值的不确定性,性能经常会降低。所提出的算法假设每个参数在一定的间隔内是已知的,并选择处理器所需参数的阀值,以防止虚警过多。一种技术为每个参数选择特定的百分位数,另一种技术使最大虚警率最小化。此外,可以向处理器中添加一个全局测量的高方差状态。将这些算法的性能与使用雷达数据的CFAR处理器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信