A Hybrid SDN Architecture for IDS Using Bio-Inspired Optimization Techniques

A. Saritha, B. N. Manjunatha Reddy, A. S. Babu
{"title":"A Hybrid SDN Architecture for IDS Using Bio-Inspired Optimization Techniques","authors":"A. Saritha, B. N. Manjunatha Reddy, A. S. Babu","doi":"10.1142/s0219265921410280","DOIUrl":null,"url":null,"abstract":"Software-defined networking (SDN) is a networking paradigm of subsequent generation where various network components are used by a centralized controller that allows reliability in network system configuration, execution of policy decisions, and management via a primary programmable network infrastructure unit. SDN is known to deny DDoS attacks despite the default security protocols. State-of-the-art researches have shown that SDN intrusion is possible in diverse layers of its generalized architecture. Addressing this problem, this work presents an optimized intrusion detection system for SDN to mitigate the effect of DDoS attacks. This article’s main contribution comprises the development of a voting strategy-based ensemble classifier, which is established based on bio-inspired particle swarm optimization and salp swarm optimization in the context of optimized classification of DDoS attack-prone traffic SDN. Experimental analysis of the proposed SDN-IDS depicts that the proposed strategy outperforms existing classifiers in terms of accuracy.","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Interconnect. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265921410280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Software-defined networking (SDN) is a networking paradigm of subsequent generation where various network components are used by a centralized controller that allows reliability in network system configuration, execution of policy decisions, and management via a primary programmable network infrastructure unit. SDN is known to deny DDoS attacks despite the default security protocols. State-of-the-art researches have shown that SDN intrusion is possible in diverse layers of its generalized architecture. Addressing this problem, this work presents an optimized intrusion detection system for SDN to mitigate the effect of DDoS attacks. This article’s main contribution comprises the development of a voting strategy-based ensemble classifier, which is established based on bio-inspired particle swarm optimization and salp swarm optimization in the context of optimized classification of DDoS attack-prone traffic SDN. Experimental analysis of the proposed SDN-IDS depicts that the proposed strategy outperforms existing classifiers in terms of accuracy.
基于生物优化技术的IDS混合SDN架构
软件定义网络(SDN)是下一代网络范例,其中各种网络组件由中央控制器使用,通过主要可编程网络基础设施单元实现网络系统配置、策略决策执行和管理的可靠性。众所周知,SDN可以拒绝DDoS攻击,尽管有默认的安全协议。最新的研究表明,SDN入侵在其广义架构的不同层都是可能的。针对这一问题,本文提出了一种优化的SDN入侵检测系统,以减轻DDoS攻击的影响。本文的主要贡献包括基于投票策略的集成分类器的开发,该分类器是在易受DDoS攻击的流量SDN优化分类的背景下,基于生物启发粒子群优化和salp群优化建立的。对所提出的SDN-IDS的实验分析表明,所提出的策略在准确率方面优于现有的分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信