{"title":"Learning real-time stereo vergence control","authors":"J. Piater, R. Grupen, K. Ramamritham","doi":"10.1109/ISIC.1999.796667","DOIUrl":null,"url":null,"abstract":"Online learning robotic systems have many desirable properties. This work contributes a reinforcement learning framework for learning a time-constrained closed-loop control policy. The task is to verge the two cameras of a stereo vision system to foveate on the same world feature, within a limited number of perception-action cycles. Online learning is beneficial in at least the following ways: 1) the control parameters are optimized with respect to the characteristics of the environment actually encountered during operation; 2) visual feedback contributes to the choice of the best control action at every step in a multi-step control policy; 3) no initial calibration or explicit modeling of system parameters is required; and 4) the system can be made to adapt to non-stationary environments. Our vergence system provides a running estimate of the resulting verge quality that can be exploited by a real-time scheduler. It is shown to perform superior to two hand-calibrated vergence policies.","PeriodicalId":300130,"journal":{"name":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","volume":"105 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1999.796667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Online learning robotic systems have many desirable properties. This work contributes a reinforcement learning framework for learning a time-constrained closed-loop control policy. The task is to verge the two cameras of a stereo vision system to foveate on the same world feature, within a limited number of perception-action cycles. Online learning is beneficial in at least the following ways: 1) the control parameters are optimized with respect to the characteristics of the environment actually encountered during operation; 2) visual feedback contributes to the choice of the best control action at every step in a multi-step control policy; 3) no initial calibration or explicit modeling of system parameters is required; and 4) the system can be made to adapt to non-stationary environments. Our vergence system provides a running estimate of the resulting verge quality that can be exploited by a real-time scheduler. It is shown to perform superior to two hand-calibrated vergence policies.