Inverse Design of Dual-resonant Absorption Photonic Structure based on Deep Learning

Baiping Li, Kehao Feng
{"title":"Inverse Design of Dual-resonant Absorption Photonic Structure based on Deep Learning","authors":"Baiping Li, Kehao Feng","doi":"10.1109/ICEICT51264.2020.9334209","DOIUrl":null,"url":null,"abstract":"Deep learning has made great progress in the field of inverse design of photonic structures, but the general artificial neural network has the problem of falling into a local minimum in inverse design. We introduce adaptive BN to solve the problem of difficult convergence and large error in a small sampling space. Using this method to predict the photonic structure parameters of graphene corresponding to the double resonance perfect absorption spectrum, a higher prediction accuracy is obtained., showing the superiority of the adaptive BN artificial neural network, and realizing the photonic structure of the on-demand spectral response anti-design.","PeriodicalId":124337,"journal":{"name":"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT51264.2020.9334209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning has made great progress in the field of inverse design of photonic structures, but the general artificial neural network has the problem of falling into a local minimum in inverse design. We introduce adaptive BN to solve the problem of difficult convergence and large error in a small sampling space. Using this method to predict the photonic structure parameters of graphene corresponding to the double resonance perfect absorption spectrum, a higher prediction accuracy is obtained., showing the superiority of the adaptive BN artificial neural network, and realizing the photonic structure of the on-demand spectral response anti-design.
基于深度学习的双共振吸收光子结构逆设计
深度学习在光子结构反设计领域取得了很大的进展,但一般的人工神经网络在反设计中存在陷入局部极小的问题。为了解决小采样空间中难以收敛和误差大的问题,我们引入了自适应BN。利用该方法预测双共振完美吸收光谱对应的石墨烯光子结构参数,获得了较高的预测精度。,显示了自适应BN人工神经网络的优越性,实现了光子结构的按需光谱响应反设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信