Rationality Proof of Newton's Method for Finding Quadratic Trinomial Factors of Univariate Integer Coefficient Polynomials

X. Yang
{"title":"Rationality Proof of Newton's Method for Finding Quadratic Trinomial Factors of Univariate Integer Coefficient Polynomials","authors":"X. Yang","doi":"10.9734/arjom/2023/v19i10724","DOIUrl":null,"url":null,"abstract":"The method of finding quadratic trinomial factors for univariate integer coefficient polynomials, proposed by the famous mathematician Isaac Newton in his mathematical monograph Arithmetica Universalis, is novel and concise, and has attracted the attention of mathematicians such as Leibniz and Bernoulli. However, no proof of this method has been given so far. This paper provides an in-depth analysis of this method and proves it with mathematical reasoning.Therefore, Newton's method of finding quadratic factors for univariate integer coefficient polynomials is reasonable, validate, and universal.","PeriodicalId":281529,"journal":{"name":"Asian Research Journal of Mathematics","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Research Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/arjom/2023/v19i10724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The method of finding quadratic trinomial factors for univariate integer coefficient polynomials, proposed by the famous mathematician Isaac Newton in his mathematical monograph Arithmetica Universalis, is novel and concise, and has attracted the attention of mathematicians such as Leibniz and Bernoulli. However, no proof of this method has been given so far. This paper provides an in-depth analysis of this method and proves it with mathematical reasoning.Therefore, Newton's method of finding quadratic factors for univariate integer coefficient polynomials is reasonable, validate, and universal.
一元整系数多项式求二次三叉因子的牛顿方法的合理性证明
著名数学家牛顿在其数学专著《普遍算术》中提出的求单变量整数系数多项式的二次三项式因子的方法新颖简洁,引起了莱布尼茨、伯努利等数学家的注意。然而,到目前为止,还没有证据证明这种方法。本文对该方法进行了深入的分析,并用数学推理进行了证明。因此,牛顿求单变量整系数多项式二次因子的方法是合理的、有效的、通用性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信