Passakorn Phannachitta, J. Keung, Akito Monden, Ken-ichi Matsumoto
{"title":"Scaling up analogy-based software effort estimation: a comparison of multiple hadoop implementation schemes","authors":"Passakorn Phannachitta, J. Keung, Akito Monden, Ken-ichi Matsumoto","doi":"10.1145/2666581.2666582","DOIUrl":null,"url":null,"abstract":"Analogy-based estimation (ABE) is one of the most time consuming and compute intensive method in software development effort estimation. Optimizing ABE has been a dilemma because simplifying the procedure can reduce the estimation performance, while increasing the procedure complexity with more sophisticated theory may sacrifice an advantage of the unlimited scalability for a large data input. Motivated by an emergence of cloud computing technology in software applications, in this study we present 3 different implementation schemes based on Hadoop MapReduce to optimize the ABE process across multiple computing instances in the cloud-computing environment. We experimentally compared the 3 MapReduce implementation schemes in contrast with our previously proposed GPGPU approach (named ABE-CUDA) over 8 high-performance Amazon EC2 instances. Results present that the Hadoop solution can provide more computational resources that can extend the scalability of the ABE process. We recommend adoption of 2 different Hadoop implementations (Hadoop streaming and RHadoop) for accelerating the computation specifically for compute-intensive software engineering related tasks.","PeriodicalId":249136,"journal":{"name":"Proceedings of the International Workshop on Innovative Software Development Methodologies and Practices","volume":"366 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Workshop on Innovative Software Development Methodologies and Practices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666581.2666582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Analogy-based estimation (ABE) is one of the most time consuming and compute intensive method in software development effort estimation. Optimizing ABE has been a dilemma because simplifying the procedure can reduce the estimation performance, while increasing the procedure complexity with more sophisticated theory may sacrifice an advantage of the unlimited scalability for a large data input. Motivated by an emergence of cloud computing technology in software applications, in this study we present 3 different implementation schemes based on Hadoop MapReduce to optimize the ABE process across multiple computing instances in the cloud-computing environment. We experimentally compared the 3 MapReduce implementation schemes in contrast with our previously proposed GPGPU approach (named ABE-CUDA) over 8 high-performance Amazon EC2 instances. Results present that the Hadoop solution can provide more computational resources that can extend the scalability of the ABE process. We recommend adoption of 2 different Hadoop implementations (Hadoop streaming and RHadoop) for accelerating the computation specifically for compute-intensive software engineering related tasks.