High-throughput asynchronous pipelines for fine-grain dynamic datapaths

Montek Singh, S. Nowick
{"title":"High-throughput asynchronous pipelines for fine-grain dynamic datapaths","authors":"Montek Singh, S. Nowick","doi":"10.1109/ASYNC.2000.837017","DOIUrl":null,"url":null,"abstract":"This paper introduces several new asynchronous pipeline designs which offer high throughput as well as low latency. The designs target dynamic datapaths, both dual-rail as well as single-rail. The new pipelines are latch-free and therefore are particularly well-suited for fine-grain pipelining, i.e., where each pipeline stage is only a single gate deep. The pipelines employ new control structures and protocols aimed at reducing the handshaking delay, the principal impediment to achieving high throughput in asynchronous pipelines. As a test vehicle, a 4-bit FIFO was designed using 0.6 micron technology. The results of careful HSPICE simulations of the FIFO designs are very encouraging. The dual-rail designs deliver a throughput of up to 860 million data items per second. This performance represents an improvement by a factor of 2 over a widely-used comparable approach by T.E. Williams (1991). The new single-rail designs deliver a throughput of up to 1208 million data items per second.","PeriodicalId":127481,"journal":{"name":"Proceedings Sixth International Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC 2000) (Cat. No. PR00586)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth International Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC 2000) (Cat. No. PR00586)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASYNC.2000.837017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

Abstract

This paper introduces several new asynchronous pipeline designs which offer high throughput as well as low latency. The designs target dynamic datapaths, both dual-rail as well as single-rail. The new pipelines are latch-free and therefore are particularly well-suited for fine-grain pipelining, i.e., where each pipeline stage is only a single gate deep. The pipelines employ new control structures and protocols aimed at reducing the handshaking delay, the principal impediment to achieving high throughput in asynchronous pipelines. As a test vehicle, a 4-bit FIFO was designed using 0.6 micron technology. The results of careful HSPICE simulations of the FIFO designs are very encouraging. The dual-rail designs deliver a throughput of up to 860 million data items per second. This performance represents an improvement by a factor of 2 over a widely-used comparable approach by T.E. Williams (1991). The new single-rail designs deliver a throughput of up to 1208 million data items per second.
用于细粒度动态数据路径的高吞吐量异步管道
本文介绍了几种新的异步管道设计,它们提供了高吞吐量和低延迟。设计的目标是动态数据路径,包括双轨和单轨。新的管道是无锁存的,因此特别适合细颗粒管道,即每个管道阶段只有一个门深。该管道采用了新的控制结构和协议,旨在减少握手延迟,这是异步管道实现高吞吐量的主要障碍。作为测试载体,采用0.6微米技术设计了一个4位FIFO。对FIFO设计的HSPICE模拟结果非常令人鼓舞。双轨设计提供高达每秒8.6亿数据项的吞吐量。与T.E. Williams(1991)广泛使用的可比方法相比,这一性能提高了2倍。新的单轨设计提供高达每秒1.08亿数据项的吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信