Super-Resolution of Face Images Based on Adaptive Markov Network

D. Huang, J. Siebert, W. Cockshott, Yijun Xiao
{"title":"Super-Resolution of Face Images Based on Adaptive Markov Network","authors":"D. Huang, J. Siebert, W. Cockshott, Yijun Xiao","doi":"10.1109/SITIS.2007.107","DOIUrl":null,"url":null,"abstract":"Adopting a patch-based Markov network as the fundamental mechanism, we first propose a patch-position constraint operation for searching matched patches in the training dataset to increase the probability value of observation function. For the hidden nodes, based on the first advantage and discovering that horizontal features of the face is more significant than vertical features visually, we create a local compatibility-checking algorithm which uses the most compatible neighboring patches along horizontal dimension of the face to synthesize the super-resolved outcome. Experiments demonstrate the effectiveness of the proposed algorithm.","PeriodicalId":234433,"journal":{"name":"2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2007.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Adopting a patch-based Markov network as the fundamental mechanism, we first propose a patch-position constraint operation for searching matched patches in the training dataset to increase the probability value of observation function. For the hidden nodes, based on the first advantage and discovering that horizontal features of the face is more significant than vertical features visually, we create a local compatibility-checking algorithm which uses the most compatible neighboring patches along horizontal dimension of the face to synthesize the super-resolved outcome. Experiments demonstrate the effectiveness of the proposed algorithm.
基于自适应马尔可夫网络的人脸图像超分辨率
采用基于补丁的马尔可夫网络作为基本机制,首先提出了一种补丁位置约束操作,在训练数据集中搜索匹配的补丁,以提高观测函数的概率值。对于隐藏节点,基于第一个优势,并发现人脸的水平特征比垂直特征在视觉上更重要,我们创建了一种局部兼容性检查算法,该算法使用人脸水平维度上最兼容的相邻补丁来合成超分辨结果。实验证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信