{"title":"A Framework for Understanding Whole-Earth Carbon Cycling","authors":"Cin-Ty A. Lee, Hehe Jiang, R. Dasgupta, M. Torres","doi":"10.1017/9781108677950.011","DOIUrl":null,"url":null,"abstract":"increasing the sensitivity of the global weathering feedback (states a to b), which buffers the rise of pCO 2 . After magmatism ends, physical and chemical weathering persist, driving pCO 2 to low levels. Magmatic orogens can potentially drive greenhouses, but are followed by global cooling due to protracted weathering.","PeriodicalId":146724,"journal":{"name":"Deep Carbon","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep Carbon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108677950.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38
Abstract
increasing the sensitivity of the global weathering feedback (states a to b), which buffers the rise of pCO 2 . After magmatism ends, physical and chemical weathering persist, driving pCO 2 to low levels. Magmatic orogens can potentially drive greenhouses, but are followed by global cooling due to protracted weathering.